

Using Cursor Prediction to Smooth Telepointer Jitter
Carl Gutwin, Jeff Dyck, and Jennifer Burkitt

Computer Science Department, University of Saskatchewan
Saskatoon, Canada, S7N 5A9

+1 306 966-8646

carl.gutwin, jeff.dyck, jen.burkitt @usask.ca

ABSTRACT
Telepointers are an important type of embodiment in real-time
distributed groupware. Telepointers can increase the presence of
remote participants and can provide considerable awareness
information about people’s locations and activities. However, the
motion of a telepointer is often disrupted by network jitter.
Although some strategies exist for dealing with jitter, none of
these techniques are able to restore the immediacy and
smoothness of a real cursor. In this paper we investigate the use of
prediction – commonly used in networked simulations and games
– to reduce the effects of jitter on telepointer motion. To
determine whether prediction can be effective for improving
telepointers, we carried out two experiments that tested the effects
of different prediction schemes (some real and some artificial) on
people’s ability to interpret telepointer gestures. These studies
show that although cursor prediction is still a difficult problem,
there are both potential performance improvements, and definite
preference advantages. Our studies suggest that telepointer
prediction should be routinely used to increase the immediacy and
naturalness of remote interaction, and suggest that prediction can
also improve interpretation in certain situations.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Tools and Techniques—User
interfaces; H.5.3 [Information Interfaces and Presentation]:
Group and Organization Interfaces—Computer-supported
cooperative work.

General Terms
Performance, Design, Experimentation, Human Factors.

Keywords
Groupware, real-time groupware, telepointers, dead-reckoning,
prediction, network delay, jitter.

1. INTRODUCTION
Telepointers are a common means for representing participants in
real-time distributed groupware. Embodiments such as
telepointers are extremely valuable in that they can show
presence, location, and activity, and can also enable gestural
communication (e.g. [4,9]). For example, people can watch the
movement of another person’s telepointer to determine what they

are doing, or can see explicit gestures produced by the other
person.
For telepointers to convey a sense of natural presence, or to
adequately show activity and gesture, the motion of the
telepointer must be smooth and consistent [12]. The telepointer
position must be updated at a high enough frequency for people to
be able to adequately interpret the cursor’s motion, and this
update frequency must remain consistent to ensure that the pacing
of the movement closely matches the original motion of the
remote user’s cursor.
However, these requirements are rarely met by real-world wide
area networks such as the Internet. In particular, when there is
jitter in the network – that is, variance in the end-to-end latency
between two groupware applications – telepointers move in a
halting and jumpy fashion. This type of movement is immediately
noticeable, and (depending on the amount of jitter) can cause
substantial problems for interpreting the telepointer’s movement.
Although methods have been proposed for reducing jitter by
buffering [12] or compensating for jitter with visual traces [10],
these techniques are limited. In particular, they cannot maintain
both the immediacy and the naturalness of the original cursor
motion, and groupware users must adapt their interaction as a
result. In this paper we explore a different approach that attempts
to achieve smooth and natural telepointer motion without
increasing latency. This approach uses telepointer prediction:
whenever a telepointer position is unavailable due to network
jitter, the receiving system will calculate a new position, thus
(artificially) maintaining the pacing of the telepointer’s motion.
In this paper we consider the issue of whether prediction in
general is an effective approach (rather than which prediction
technique to use). To test the effectiveness of telepointer
prediction, we carried out two experiments. The first compared a
basic dead reckoning algorithm to a ‘normal’ jittered telepointer.
Participants were asked to identify simple gestures that were
drawn by either the predicted or the unpredicted telepointer. This
experiment showed that although participants preferred the
predicted telepointer, prediction did not improve interpretation,
because at levels of jitter where gesture interpretation begins to
become difficult (above about 200ms), prediction error was also
high.
These results raise the question of whether any prediction scheme
could succeed in improving gesture interpretation. Prediction
error appeared to be the main factor, which leads us to our second
study. This experiment examined the question of exactly how
accurate a prediction system would have to be in order to show a
performance improvement. We used a Wizard-of-Oz method to
manipulate the error of an artificial prediction technique. Using
simple linear prediction as the baseline, we produced three
artificial predictors with controlled error rates. We once again

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

asked participants to interpret telepointer gestures under several
different prediction and jitter conditions. Our results show that
when the jitter period is 320ms, a prediction scheme would have
to have less than 40 pixels mean maximum error – about 25% less
error than linear prediction – to significantly improve gesture
interpretation over no prediction.
These empirical results are the first lower bound we are aware of
that designers can use when considering whether a specific
prediction technique will be effective in reducing the
interpretation problems that are caused by network jitter.
In addition, the idea of telepointer prediction is one that presents a
number of additional possibilities for improving networked
groupware. In particular, we argue that the display of a telepointer
can be de-coupled from the sampling and sending of the position
information. Decoupling could lead to several benefits. For
example, it may be feasible to considerably reduce the number of
telepointer messages sent between groupware systems without
unduly affecting the receiver’s perception of the telepointer –
since even basic prediction algorithms work quite well for short
periods of time.
In the following sections we provide more detail on the use of
telepointers for gesture in groupware, the problem of jitter, and
the idea of motion prediction. We then report on the two
experiments and discuss the implications for the design of
telepointers in real-time groupware.

2. GESTURES IN GROUPWARE
Gestures in groupware are frequent and are used for a variety of
purposes. In general, information may be communicated through
gestures in two ways, either explicitly or implicitly.
Explicit gestures are intentional actions designed to convey a
particular message to another person. There are several types of
explicit gesture: for example, pointing to indicate objects, areas,
and directions [19], drawing to show paths, shapes, or abstract
figures [3], describing to show orientations, distances, or sizes [3],
or demonstrating to act out the use or operation of an artifact [18].
There are other more specialized types as well, such as the
emblem, where a gesture stands for a particular word or phrase
(e.g. a checkmark for “OK”).
The second type of gesture is that which communicates implicitly
and unintentionally – where others pick up information simply
from watching another person’s movements and actions. Many
kinds of activity have characteristic and recognizable motions
that, although not intended to convey information, can easily be
seen and interpreted by another person. For example, the back-
and-forth motion of erasing a drawing with a pencil eraser can be
understood even from a distance. These implicit gestures are also
important for the smooth operation and coordination of a group,
since they provide valuable awareness information about others’
actions and activities [17].
In the studies described below, we focus on explicit gestures – in
particular, drawings and demonstrations that involve tracing a
shape on the work surface.

3. TELEPOINTER JITTER
There are two main types of delay in groupware systems: latency
and jitter. Latency is the lag time between the occurrence of an
event on a local machine (e.g. movement of the mouse) and

display of that event on a remote machine (e.g. movement of the
telepointer). Latency has been shown to cause problems in a
variety of group interactions (e.g. [16,6]). However, simple
latency is not a major problem for the interpretation of gestures,
as long as all messages are delayed by the same amount.
The second type of delay – jitter – is much more problematic for
gesture interpretation. Jitter is variance in latency, causing some
messages to arrive too far apart, others too close together (see
Figure 1). Jitter is only an issue for streams of information that
have a meaningful spacing to begin with, such as voice data or
cursor movement. Jitter occurs because network traffic changes
from moment to moment, causing variable slowdowns, loss, and
bottlenecks. To a viewer, the characteristic effect of jitter is
halting, jerky motion. This effect can be broken down as follows:
1. The sender produces a regular stream of messages (e.g.

pointer positions every 20 ms);
2. Something in the network (e.g. an unrelated traffic surge)

causes a delay in the stream of position messages;
3. As a result of the delay, several messages ‘pile up’ and arrive

at the same time at the receiver;
4. Processing this group of messages results in several

coincident requests to draw the telepointer (assuming that no
application-level buffering is done);

5. The display system draws each position, but the screen is
refreshed with the next position too quickly for motion to be
discerned by the user.

6. The viewer sees the telepointer jump from its initial position,
where it had been frozen since the delay began, to the current
location, without seeing the intermediate positions.

0

500

1000

1500

2000

0 500 1000 1500 2000
Send time

R
ec

ei
ve

 ti
m

e

Jitter
No Jitter

0

500

1000

1500

2000

0 500 1000 1500 2000
Send time

R
ec

ei
ve

 ti
m

e

Jitter
No Jitter

Figure 1. Example of pileup caused by network bottleneck in
a stream of UDP messages sent at 100ms intervals. Messages
1-8 are all basically on time and are spaced appropriately.

Messages 9-14 are all delayed by a network bottleneck, and
arrive at the receiver at the same time. The line of cursors at
bottom shows the original spacing of pointer positions; at left

shows which positions are drawn.
Jitter has primarily been studied in streaming media, where is has
been shown that people notice even very small variations in
playback of sound and video files. Jitter has also been shown to
cause problems for certain types of group interaction in
groupware. For example, jitter delays of more than about 300ms
make it more difficult for people to predict where another
person’s telepointer is moving [12]; delays of more than about
200ms make gesture interpretation more difficult [11].

4. MOTION PREDICTION
Techniques for predicting an object’s location based on past
positions has been explored in two main ways: first, as a way to
maintain consistency in distributed simulations and networked
games, and second, as a way to improve targeting in single-user
interfaces. Both of these efforts are valuable in considering
telepointer prediction, since the former is concerned with
overcoming network delays, and the latter is specifically
concerned with cursors.
Motion prediction in distributed simulations and games is used to
maintain a consistent world-view for each participant (e.g. [7,13].
Prediction is needed in these situations primarily because of
network delay (both latency and jitter). For example, in a multi-
player game, a remote player’s avatar may appear to be in one
position, but because of network delay, will actually be in a
different location (e.g. [14]). When objects or avatars interact
(e.g. shoot each other), these inconsistencies can lead to confusion
(e.g. clear hits have no effect on the target). Therefore, most real-
time networked games use physically-based prediction schemes
(generally called dead reckoning) to calculate location and
motion.
Dead-reckoning has been extremely successful in improving a
game-player’s interaction with distributed objects (e.g. [5,8]), and
this success suggests that the technique may also be effective for
telepointers in groupware. However, one caveat is that dead-
reckoning is best applied to objects with force-based movement
models and strong inertial properties (e.g. ships, vehicles, bodies),
since inertia makes motion more predictable. Telepointers are
moved through absolute positioning of a mouse, rather than by a
force model, and therefore are able to move in more unpredictable
ways than the objects typically found in games and distributed
simulations.
The second background area, target prediction, is not motivated
by the problems of network delay, but does deal specifically with
the issues involved in predicting cursor motion (e.g. [2,15,21]).
Researchers in this area are interested in improvements to single-
user interaction with graphical interfaces; and more specifically,
have investigated whether the eventual rest position of a cursor
movement can be determined. The reason for making this
prediction is to improve targeting time: for example, the user
could save time by not having to move all the way to the target, or
could have the predicted target expand as the cursor moved
toward it.
Some of these systems have been successful in laboratory
experiments, and have used several prediction algorithms such as
Kalman filters, neural networks, or non-linear regression (e.g.
[2]). These results similarly suggest that telepointer prediction
may have potential. Again, however, the techniques cannot be
simply transferred to the groupware setting. Target prediction is
concerned with eventual rest position, rather than path to get
there, and is much more accurate with ballistic movements of the
pointing device (which again introduce the benefits of inertia).
Gestures involve slower controlled motion with more twists and
turns that are more difficult to predict, and so it is not clear
whether either dead-reckoning or target prediction methods will
be effective in smoothing telepointer jitter.
To determine whether telepointer prediction can be effective, we
carried out two experiments. The first tested the effects of a real
prediction algorithm on people’s abilities to interpret telepointer

gestures, and the second considered the issue of how accurate any
prediction scheme would have to be in order to cause a
performance improvement.

5. FIRST STUDY: THE EFFECTIVENESS
OF A BASIC PREDICTION TECHNIQUE

Our first study was intended as a pilot to get an initial idea of how
a basic dead-reckoning technique would compare against an
unaltered (i.e. affected by jitter) telepointer.

5.1 Methodology
5.1.1 Participants and Apparatus
Eight paid participants (4 male, 4 female) were recruited from a
local university. All participants were right handed and were
frequent users of mouse and windows systems (at least 12
hours/week).
The experiment was conducted on a Dell Inspirion 4100 PC
running a custom-built TCL/Tk application, using a 14-inch
monitor set to 1400x1050 resolution. The study system presented
a series of trials showing gestures drawn by a simulated
telepointer.

5.1.5 Gesture types and tasks
The gestures in the study all involved the tracing of a shape or
symbol, one common type of gestural communication. To test the
interpretability of these shape gestures, we prerecorded a set of 33
shapes (see Figure 2) that included letters, numbers, and simple
strokes. The shapes were all approximately 10 cm in height when
drawn on the screen. The participant’s task was to determine
which of the 33 gestures was being shown on the screen;
participants chose their answers from an answer sheet that showed
all the gestures (similar to Figure 2) and entered their answer on
the system.

Figure 2. Shape gestures used in the study. The dot indicates

where the gesture begins.

5.1.3 Gesture Replay Mechanism
The study used pre-recorded traces of gestures, in order to give
each participant a consistent viewing experience. These traces
contained time and position information that allowed the replay of
the gesture in the experimental system. In addition, we were able
to manipulate the replay of the gesture in order to create jitter and
prediction conditions.
The replay mechanism used the following rules:

• The position information in the trace are extracted at a fixed
rate (as if the remote cursor in a real groupware system was
being sampled and sent at a fixed rate – e.g. every 30ms).

• Jitter events are simulated by ‘holding back’ messages from
the trace for a set amount of time (the jitter period), and then
processing this group all at once.

• In prediction conditions, messages in this jitter group were
ignored during the jitter period, and position information is
calculated based on the last known locations.

• At the end of the jitter period, the actual position information
is fed into the prediction algorithm, so that the next set of
predictions always begin with true position data.

• As soon as one jitter period was completed and the previous
position information was delivered, another jitter event
would start.

• No correction was carried out; that is, no attempt was made
to smoothly connect an erroneous predicted path with newly-
received actual position information.

5.1.4 Prediction algorithm
The algorithm used in the study is a basic dead-reckoning scheme
similar to that used in distributed simulations. The algorithm
predicts the next point based on three values: the most recent
absolute position, the most recent change in x and y values (i.e.
the velocity), and a rolling average of the recent changes in
velocity (i.e. the acceleration).

xnext = xprevious + velocityx + averageAccelerationx
ynext = yprevious + velocityy + averageAccelerationy

This technique allows curves to be predicted, and works fairly
well at low jitter periods. Figure 3 shows that the scheme is
reasonably accurate when predicting motion for 160ms; however,
when predicting for 320ms, the errors become considerably larger
(Figure 4).

Figure 3. Prediction for shape #10 (see Figure 2), with jitter
periods of 160ms. Dashed line and green dots indicate actual

shape; grey line and red dots indicate predicted path.

Figure 4. Prediction for shape 10 with jitter period of 320ms.

5.1.5 Procedure
Participants were introduced to the idea of telepointers and
network delay, and were shown the experimental system.
Participants then completed 60 trials which were grouped into
eight blocks. For the lowest and highest jitter periods (considered
to be boundary conditions), participants completed five trials per
block; for the two middle jitter periods, participants completed ten
trials per block.
In each trial, the participant viewed a telepointer movement, and
then entered into the system the identification number of the
shape that they believed best fit what they had seen. Participants
were supplied with a list of the 33 shapes and their corresponding
identification numbers. After each answer, the participant could
continue to the next trial by pressing the space key on the
keyboard. Upon completion of the 60 trials, participants
completed a brief post-test. In this test, participants were shown
two example gestures from each study condition, and were asked
to indicate which example they preferred for telepointer motion.

5.1.5 Experimental Design
The first study compared participants’ interpretation accuracy
when viewing either a jittered or a predicted stream of telepointer
messages. We used a 2x4 within-participants mixed factorial
design. The factors were:

• Prediction Type: None (Jitter) or Dead Reckoning (DR)

• Jitter period: 80ms, 160ms, 240ms, 320ms
In total, 480 gestures were shown in the experiment. Data
collection included decisions about what each gesture showed
(collected by the experiment system), and the post-experiment
questionnaire which recorded the participant’s preferences.

5.2 First Study Results
Our goal in the first study was to determine whether participants
would be more accurate in interpreting gestures when prediction
was used, and whether participants would prefer prediction over
the corresponding jitter conditions. The results reported below are
organized around these two issues.

5.2.1 Accuracy
Figure 5 shows the mean percentage of correct answers for each
jitter period, for both prediction and no prediction. ANOVA

showed no significant accuracy differences related to the use of
prediction (F1,7=2.24, p=0.14). In addition, as can be seen from
the figure, accuracy is lower at jitter periods of 240ms and 320ms.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

80ms 160ms 240ms 320ms
Jitter Period

In
te

rp
re

ta
tio

n
A

cc
ur

ac
y

Dead Reckoning
No Prediction

Figure 5. Mean interpretation accuracy for all jitter periods.
It was clear that at lower jitter periods, people do not have much
difficulty ‘filling in the gaps’ caused by jitter. Therefore, in the
situations where the dead-reckoning algorithm was accurate, there
is very little room to improve people’s performance. As the jitter
period increases, making interpretation more difficult, the error of
the dead-reckoning algorithm also increased, reducing the
effectiveness of the technique.

5.2.2 Preference
Table 1 shows participants’ preferences for either prediction or no
prediction, for each jitter period. At jitter periods of 80ms and
160ms, all participants preferred the predicted telepointer; at
240ms, preference was mixed; and at 320ms, prediction was no
longer seen as an improvement over the normal jittered
telepointer.

Table 1. Preference results (number of participants)
for each jitter period.

Prediction type 80ms 160ms 240ms 320ms

Dead reckoning 8 8 4 0

No prediction 0 0 4 8

6. SECOND STUDY: HOW ACCURATE
DOES PREDICTION NEED TO BE?

The first study suggests that it will be difficult for a dead-
reckoning algorithm to improve interpretation performance if the
error of the predictions grows more quickly than the problems
caused by the jitter itself. To determine just how accurate any
prediction scheme would have to be to significantly improve
performance, we carried out a second study with jitter periods that
were larger than those used earlier.

6.1 Methodology
6.1.1 Participants and Apparatus
Eighteen paid participants (13 male, 5 female) were recruited
from a local university. All participants were right-handed and
were frequent users of mouse-and-windows systems (at least 12

hours/week). Ten of the eighteen participants had some
experience playing multiplayer games.
The experimental setup was similar to that used in the first study
(Section 5.1.1), except that the software was modified to use a
different set of jitter conditions and a different prediction
algorithm.

6.1.3 Artificial Prediction Schemes
The prediction algorithm was developed using a Wizard-of-Oz
strategy to allow manipulation of the degree of prediction
accuracy that the algorithm could attain. Because the system has
knowledge of the real future positions of the telepointer (since we
have the entire trace), we can determine a set of artificial
prediction schemes with varying levels of accuracy.
In the second study, we created artificial predictors with a range
of accuracies between simple linear prediction and perfect
prediction. Linear (i.e. straight-line) prediction was used as the
baseline because it can easily be implemented in any groupware
system. With linear prediction, and with foreknowledge of the
actual positions, we can manipulate the accuracy of the artificial
prediction schemes by translating each predicted point a certain
percentage of the distance between the linear predicted point and
the actual point (see Figure 6).

Figure 6. Artificial prediction techniques. Inside line (P0) is
the actual shape, outside line is linear prediction (P100). The

three lines in between (P75, P50, P25) represent different
error amounts compared to linear prediction.

The relative-to-linear categorization that was used to create these
prediction schemes, however, is inappropriate for comparison
with other techniques. Therefore, we also calculated a measure of
their absolute error for each jitter period. We chose mean
maximum error (MME) as a reasonable indication of absolute
error. Mean maximum error is the average distance from the
actual position of the most erroneous predicted point in each jitter
period. We believe that this measure is more appropriate than
overall average error, because it appeared to be the large
deviations that caused problems for interpretation in the first

study. The MMEs for the five prediction schemes are shown in
Table 2.
For comparison, the dead-reckoning algorithm used in the first
study has an MME of 188 pixels at 320ms, and of 406 at 480ms.

Table 2. Mean maximum error amounts (in pixels) for
prediction schemes used in second study

Scheme Description MME
(320ms)

MME
(480ms)

P100 Linear 160 260

P75 Artificial predictor with
75% of linear error

120 195

P50 Artificial predictor with
50% of linear error

80 130

P25 Artificial predictor with
25% of linear error

40 65

P0 Perfect prediction 0 0

6.1.5 Procedure
Participants were introduced to the study in a similar way to that
described above (Section 5.1.5). Participants then carried out a set
of 25 practice trials, and then completed 120 test trials grouped
into 12 blocks (10 trials in each study condition). Again, each trial
involved viewing a remote cursor movement and then identifying
the shape that was drawn. Participants were allowed to rest
between blocks.
Upon completion of all trials participants completed a brief post-
test that was similar to that used in the first study. In the test,
participants were shown example gestures from the different
study conditions and were asked to indicate their preferences.

6.1.4 Experimental Design
The second study also compared participants’ interpretation
performance when viewing telepointer gestures with a range of
prediction schemes. We used a 6x2 within-participants mixed
factorial design. The factors were:

• Prediction Type: None (Jitter), P100 (Linear), P75, P50, P25,
or P0 (Perfect)

• Jitter period: 320ms or 480ms
With 18 participants and 10 trials per condition, 2160 gestures
were shown in total. Data collection included decisions about
what each gesture showed and elapsed time to make each decision
(collected by the experiment system), and the post-experiment
questionnaire which recorded the participant’s preferences.

6.2 Second Study Results
Results from the second study are presented below, organized by
interpretation accuracy and response time.

6.2.1 Interpretation Accuracy
Figure 7 shows the mean rate of correct answers for each
prediction type. As expected, ANOVA shows a significant main
effect of prediction type (F1,17=19.0, p<0.001). To determine the
minimum level of accuracy needed to significantly improve
performance over no prediction, we carried out post-hoc t-tests
comparing the no-prediction condition to each other scheme.

Results of these tests were similar for both jitter periods: there
was no difference between no-prediction and P100 (linear
prediction), but all of the other schemes showed significant
differences (see Table 3).

0.86 0.86
0.89 0.94

0.94 0.93

0.77 0.77
0.83

0.90

0.95 0.95

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

No
prediction

P100
(Linear)

P75 P50 P25 P0
(Perfect)

Prediction technique

In
te

rp
re

ta
tio

n
ac

cu
ra

cy

320ms
480ms

Figure 7. Mean interpretation accuracy for all prediction

techniques.

Table 3. T-test comparisons (two-tailed) between no
prediction and other schemes, for 320ms data.

Comparison to: p Actual difference in
interpretation accuracy

P100 0.28 0%

P75 <0.001 3%

P50 <0.001 8%

P25 <0.001 9%

P0 <0.001 9%

The artificial predictor P75 (which had 75% of the error of linear
prediction) is the first predictor that is significantly different from
no prediction. Using the absolute error values given above
(Section 6.1.3), any prediction algorithm could therefore
significantly improve interpretation if it had an MME of 40 pixels
at 320ms jitter, or 65 pixels at 480ms jitter.

6.2.2 Response Time
We also considered how response times (the time it took
participants to enter their answer) varied across prediction types.
Figure 8 shows mean response times for each type; the results are
similar to those for interpretation accuracy. There was a main
effect of prediction type (F1,17=27.9, p<0.001), and post-hoc t-
tests showed that the first predictor to be significantly different
from no prediction was P75 (p<0.05).

0

1000

2000

3000

4000

5000

6000

7000

No
prediction

P100
(Linear)

P75 P50 P25 P0
(Perfect)

Prediction technique

R
es

po
ns

e
tim

e

320ms
480ms

Figure 8. Mean time to answer for all prediction techniques.

7. DISCUSSION
In the following paragraphs, we discuss several issues that arise
from the two studies reported above. We first summarize the
results, and then consider whether telepointer prediction should be
part of groupware systems, either on the grounds of assisting
interpretation or on the grounds of user satisfaction. We then
examine other potential benefits of prediction, such as the idea of
using prediction to make groupware communication more
efficient.
The main results from the first study were that basic dead
reckoning does not improve gesture interpretation, primarily
because prediction error increases along with the jitter period;
however, participants all preferred the predicted presentation at
low jitter periods. The second study showed that a prediction
algorithm would require a mean maximum error of 40 pixels in
order to make a significant improvement in interpretation. This
error rate corresponds to 75% of the error of linear prediction.
Effectiveness of telepointer prediction. For improving
interpretation of gestures, telepointer prediction remains a
difficult task. Even though a prediction scheme needs only
outperform linear prediction by a small margin, this may be
difficult to do. For example, the dead reckoning algorithm used in
the first study (a technique that has been successful in many
networked games) actually has a higher MME than linear
prediction at both 320ms and 480ms. This suggests that
telepointers may not be amenable to higher-order models that use
velocity and acceleration, and consequently that more
complicated prediction schemes (e.g. Kalman filters or non-linear
regression) may also have difficulty with telepointer motion
during gestures. However, we leave to future work the
classification of other prediction schemes in terms of our
framework (to facilitate testing, the shape gesture data used in our
studies can be obtained from
hci.usask.ca/projects/prediction.xml).
However, the studies also show several positive results for
prediction. First, the gestures tested in our studies are likely one
of the most difficult prediction tasks available (and were chosen
for this reason) due to the large number of curves and corners in
the shapes. There are several types of telepointer motion that
should be easier to predict. For example, moving to a particular
point in the workspace, which is also negatively affected by jitter

[12], involves much more straight-line motion than the gestures
studied here.
Second, the second study showed that the performance of a very
simple prediction technique (linear prediction) was surprisingly
good at higher jitter periods – in that it was no worse than no
prediction. This at least means that prediction need not reduce
interpretation performance. This is important, because one of the
main benefits of prediction appears to be in increasing user
satisfaction. There was a strong preference for the smoothness
provided by the prediction techniques (as long as the prediction’s
errors did not cause more problems than the original jitter). This
implies that predicting may be well worth using in groupware,
even if it is unclear whether it will improve interpretation.
Other uses of prediction. The success of prediction techniques at
low jitter periods raises the possibility of using these mechanisms
for a new purpose – not to combat existing jitter, but rather to
tune the network distribution and presentation performance of the
groupware system. From our empirical results, it appears that a
groupware system does not need to send every telepointer
position as a separate message: it should be possible to send fewer
messages (although still including all data points) and simply
predict those points that have been delayed (this essentially adds
controlled artificial jitter at the application level). This would
allow systems to reduce telepointer messages by a considerable
amount (e.g. 5-10 times, based on the data of our first study) – or
alternatively, to send a much higher-granularity message stream
without requiring additional message traffic.
This idea also suggests a more general approach to the problem of
telepointer performance. It is possible that the sending of a
telepointer’s position can be decoupled from its screen
representation, and these two entities can be modeled
independently. Using prediction allows groupware to stop treating
telepointers as an event-driven system, and avoid some of the
problems that occur when events with temporal requirements are
sent over inconsistent networks like the Internet. This approach
suggests, for example, that each client can sample and send cursor
information at its own optimal rate (depending on factors such as
processor load); but receiving clients can update the telepointers
based on their local redisplay frequency. This could lead to a
groupware user experience that is more natural than what has
currently been possible.

8. FUTURE WORK
In future work, we plan to continue this research in three ways.
First, we will implement and categorize other existing prediction
techniques to test their accuracy on our data sets; if any of these
have a lower MME than linear prediction, we will test its efficacy
in a further user study. Second, we plan to develop the idea of
decoupling telepointer display from sampling and distribution;
one goal is to build an adaptive system that can optimize the
distribution rate and the displayed update frequency based on
current network conditions. Third, we plan to consider how
prediction techniques work with other telepointer enhancements:
for example, with historical traces [10] or delay indicators [4].

9. CONCLUSION
Telepointers are important parts of many groupware systems, both
for providing a sense of presence for remote participants, and for
conveying awareness information and gestural communication.

However, the quality-of-service requirements for delivering
smooth and natural telepointer motion are not often met on
networks such as the Internet. In this paper, we proposed the idea
of telepointer prediction – based on techniques seen in distributed
simulations and games – as a way to smooth telepointers in jittery
networks. We ran two studies to explore the effectiveness of
telepointer prediction on people’s abilities to interpret gestures.
Although the studies show that it may be difficult to successfully
improve interpretation, it was clear that people liked the smoother
motion provided by prediction techniques. Given that there are
simple techniques that (at least) do not appear to degrade
interpretation, we suggest that telepointer prediction should be
considered as a way to improve user satisfaction with real-time
groupware.

9. REFERENCES
[1] Baldwin, J., A. Basu and H. Zhang, Predictive Windows for

Delay Compensation in Telepresence Applications, Proc.
1998 IEEE International Conference on Robotics and
Automation, Leuven, Belgium, May 16-20, 1998.

[2] Baldwin, J, Basu, A., and Zhang, H., Cursor trajectory
prediction with a Kalman filter, in Proceedings of the 1998
IEEE International Conference on Robotics and Automation,
1998, pp 2884-2889.

[3] Bekker, M., Olson, J., and Olson, G. Analysis of Gestures in
Face-to-Face Design Teams Provides Guidance for How to
Use Groupware in Design. Proc. DIS'95 Symposium on
Designing Interactive Systems, 1995, 157-166.

[4] Benford, S., Bowers, J., Lennart, E.F., Greenhalgh, C.,
Snowdon, D. User embodiment in collaborative virtual
environments. Proc. ACM CHI’95, 1995, 242 – 249.

[5] Capin, T., Pandzic, I., Thalmann, D., Magnenat-Thalmann,
N., A Dead-Reckoning Algorithm for Virtual Human
Figures, Proc.VRAIS'97 (IEEE Press), Albuquerque, USA,
pp.161-168, 1997

[6] Conner, D.B. and Holden, L.S., Providing a Low-Latency
User Experience in a High-Latency Application.
Proceedings of 1997 Symposium on Interactive 3D Graphics,
Providence, Rhode Island, April 27-30, 1997.

[7] Diot, C., and Gautier, L. A Distributed Architecture for
Multiplayer Interactive Applications on the Internet, IEEE
Networks, Vol. 13, No. 4, pp.6-15, July-August 1999.

[8] Durbach, C. and Fourneau, J-M, Performance Evaluation of
a Dead Reckoning Mechanism, Proceedings of the Second
International Workshop on Distributed Interactive
Simulation and Real-Time Applications, IEEE Press, 1998,
Montreal, Canada, pp. 23-32.

[9] Greenberg, S., Gutwin, C., and Roseman, M. (1996),
Semantic Telepointers for Groupware. Proc. OzCHI '96,
Hamilton, NZ.

[10] Gutwin, C. Traces: Visualizing the Immediate Past to
Support Group Interaction. Proceedings of Graphics
Interface 2002, Calgary, 2002

[11] Gutwin, C., and Penner, R. (2002) Improving Interpretation
of Remote Gestures with Telepointer Traces. Proceedings of
ACM CSCW 2002.

[12] Gutwin, C. The Effects of Network Delays on Group Work
in Real-Time Groupware. Proc. 7th European Conference on
CSCW, Bonn, 2001, 299-318.

[13] Macedonia, M., Brutzman, D., Zyda, M., Pratt, D., Barham,
P., Falby, J., and Locke, J., NPSNET: A Multi-Player 3D
Virtual Environment Over the Internet, Proceedings of the
1995 Symposium on Interactive 3D Graphics, 9, Monterey,
California, 1995.

[14] Mauve, M., How to Keep a Dead Man from Shooting, Proc.
7th International Workshop on Interactive Distributed
Multimedia Systems and Telecommunication Services
(IDMS) 2000.

[15] Murata, A., Improvement of Pointing Time by Predicting
Targets in Pointing with a PC Mouse, International Journal
of Human-Computer Interaction, 1998, 10, 1, pp 23-32.

[16] Park, K. and Kenyon, R. (1999), Effects of Network
Characteristics on Human Performance in the Collaborative
Virtual Environment. Proc. IEEE Virtual Reality '99, March
14-17, 1999.

[17] Segal, L. Designing Team Workstations: The Choreography
of Teamwork, in Local Applications of the Ecological
Approach to Human-Machine Systems, P. Hancock, J. Flach,
J. Caird and K. Vicente ed., Erlbaum, Hillsdale NJ, 1995,
392-415.

[18] Tang, J. Findings from Observational Studies of
Collaborative Work, International Journal of Man-Machine
Studies, 34(2), 1991, 143-160.

[19] Tatar, D., G. Foster, and D. Bobrow. Design for
Conversation: Lessons from Cognoter, International Journal
of Man-Machine Studies, 34(2), 1991, 185-210.

[20] Vaghi, I., Greenhalgh, C., and Benford, S. (1999), Coping
with Inconsistency due to Network Delays in Collaborative
Virtual Environments. Proc. ACM Workshop on Virtual
Reality and Software Technology, 1999, 42-49.

[21] Wu, J., and Ouhyoung, M., A 3D Tracking Experiment on
Latency and Its Compensation Methods in Virtual
Environments, Proc. ACM Symposium on User Interface and
Software Technology, 1995, pp. 41-49.

