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ABSTRACT 
Telepointers are an important type of embodiment in real-time 
distributed groupware. Telepointers can increase the presence of 
remote participants and can provide considerable awareness 
information about people’s locations and activities. However, the 
motion of a telepointer is often disrupted by network jitter. 
Although some strategies exist for dealing with jitter, none of 
these techniques are able to restore the immediacy and 
smoothness of a real cursor. In this paper we investigate the use of 
prediction – commonly used in networked simulations and games 
– to reduce the effects of jitter on telepointer motion. To 
determine whether prediction can be effective for improving 
telepointers, we carried out two experiments that tested the effects 
of different prediction schemes (some real and some artificial) on 
people’s ability to interpret telepointer gestures. These studies 
show that although cursor prediction is still a difficult problem, 
there are both potential performance improvements, and definite 
preference advantages. Our studies suggest that telepointer 
prediction should be routinely used to increase the immediacy and 
naturalness of remote interaction, and suggest that prediction can 
also improve interpretation in certain situations. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Tools and Techniques—User 
interfaces; H.5.3 [Information Interfaces and Presentation]: 
Group and Organization Interfaces—Computer-supported 
cooperative work.  

General Terms 
Performance, Design, Experimentation, Human Factors. 

Keywords 
Groupware, real-time groupware, telepointers, dead-reckoning, 
prediction, network delay, jitter. 

1. INTRODUCTION 
Telepointers are a common means for representing participants in 
real-time distributed groupware. Embodiments such as 
telepointers are extremely valuable in that they can show 
presence, location, and activity, and can also enable gestural 
communication (e.g. [4,9]). For example, people can watch the 
movement of another person’s telepointer to determine what they 

are doing, or can see explicit gestures produced by the other 
person.  
For telepointers to convey a sense of natural presence, or to 
adequately show activity and gesture, the motion of the 
telepointer must be smooth and consistent [12]. The telepointer 
position must be updated at a high enough frequency for people to 
be able to adequately interpret the cursor’s motion, and this 
update frequency must remain consistent to ensure that the pacing 
of the movement closely matches the original motion of the 
remote user’s cursor. 
However, these requirements are rarely met by real-world wide 
area networks such as the Internet. In particular, when there is 
jitter in the network – that is, variance in the end-to-end latency 
between two groupware applications – telepointers move in a 
halting and jumpy fashion. This type of movement is immediately 
noticeable, and (depending on the amount of jitter) can cause 
substantial problems for interpreting the telepointer’s movement. 
Although methods have been proposed for reducing jitter by 
buffering [12] or compensating for jitter with visual traces [10], 
these techniques are limited. In particular, they cannot maintain 
both the immediacy and the naturalness of the original cursor 
motion, and groupware users must adapt their interaction as a 
result. In this paper we explore a different approach that attempts 
to achieve smooth and natural telepointer motion without 
increasing latency. This approach uses telepointer prediction: 
whenever a telepointer position is unavailable due to network 
jitter, the receiving system will calculate a new position, thus 
(artificially) maintaining the pacing of the telepointer’s motion. 
In this paper we consider the issue of whether prediction in 
general is an effective approach (rather than which prediction 
technique to use). To test the effectiveness of telepointer 
prediction, we carried out two experiments. The first compared a 
basic dead reckoning algorithm to a ‘normal’ jittered telepointer. 
Participants were asked to identify simple gestures that were 
drawn by either the predicted or the unpredicted telepointer. This 
experiment showed that although participants preferred the 
predicted telepointer, prediction did not improve interpretation,  
because at levels of jitter where gesture interpretation begins to 
become difficult (above about 200ms), prediction error was also 
high. 
These results raise the question of whether any prediction scheme 
could succeed in improving gesture interpretation. Prediction 
error appeared to be the main factor, which leads us to our second 
study. This experiment examined the question of exactly how 
accurate a prediction system would have to be in order to show a 
performance improvement. We used a Wizard-of-Oz method to 
manipulate the error of an artificial prediction technique. Using 
simple linear prediction as the baseline, we produced three 
artificial predictors with controlled error rates. We once again 
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asked participants to interpret telepointer gestures under several 
different prediction and jitter conditions. Our results show that 
when the jitter period is 320ms, a prediction scheme would have 
to have less than 40 pixels mean maximum error – about 25% less 
error than linear prediction – to significantly improve gesture 
interpretation over no prediction.  
These empirical results are the first lower bound we are aware of 
that designers can use when considering whether a specific 
prediction technique will be effective in reducing the 
interpretation problems that are caused by network jitter.  
In addition, the idea of telepointer prediction is one that presents a 
number of additional possibilities for improving networked 
groupware. In particular, we argue that the display of a telepointer 
can be de-coupled from the sampling and sending of the position 
information. Decoupling could lead to several benefits. For 
example, it may be feasible to considerably reduce the number of 
telepointer messages sent between groupware systems without 
unduly affecting the receiver’s perception of the telepointer – 
since even basic prediction algorithms work quite well for short 
periods of time.   
In the following sections we provide more detail on the use of 
telepointers for gesture in groupware, the problem of jitter, and 
the idea of motion prediction. We then report on the two 
experiments and discuss the implications for the design of 
telepointers in real-time groupware.  

2. GESTURES IN GROUPWARE 
Gestures in groupware are frequent and are used for a variety of 
purposes. In general, information may be communicated through 
gestures in two ways, either explicitly or implicitly. 
Explicit gestures are intentional actions designed to convey a 
particular message to another person. There are several types of 
explicit gesture: for example, pointing to indicate objects, areas, 
and directions [19], drawing to show paths, shapes, or abstract 
figures [3], describing to show orientations, distances, or sizes [3], 
or demonstrating to act out the use or operation of an artifact [18]. 
There are other more specialized types as well, such as the 
emblem, where a gesture stands for a particular word or phrase 
(e.g. a checkmark for “OK”). 
The second type of gesture is that which communicates implicitly 
and unintentionally – where others pick up information simply 
from watching another person’s movements and actions. Many 
kinds of activity have characteristic and recognizable motions 
that, although not intended to convey information, can easily be 
seen and interpreted by another person. For example, the back-
and-forth motion of erasing a drawing with a pencil eraser can be 
understood even from a distance. These implicit gestures are also 
important for the smooth operation and coordination of a group, 
since they provide valuable awareness information about others’ 
actions and activities [17].  
In the studies described below, we focus on explicit gestures – in 
particular, drawings and demonstrations that involve tracing a 
shape on the work surface. 

3. TELEPOINTER JITTER 
There are two main types of delay in groupware systems: latency 
and jitter. Latency is the lag time between the occurrence of an 
event on a local machine (e.g. movement of the mouse) and 

display of that event on a remote machine (e.g. movement of the 
telepointer). Latency has been shown to cause problems in a 
variety of group interactions (e.g. [16,6]). However, simple 
latency is not a major problem for the interpretation of gestures, 
as long as all messages are delayed by the same amount. 
The second type of delay – jitter – is much more problematic for 
gesture interpretation. Jitter is variance in latency, causing some 
messages to arrive too far apart, others too close together (see 
Figure 1). Jitter is only an issue for streams of information that 
have a meaningful spacing to begin with, such as voice data or 
cursor movement. Jitter occurs because network traffic changes 
from moment to moment, causing variable slowdowns, loss, and 
bottlenecks. To a viewer, the characteristic effect of jitter is 
halting, jerky motion. This effect can be broken down as follows: 
1.  The sender produces a regular stream of messages (e.g. 

pointer positions every 20 ms); 
2.  Something in the network (e.g. an unrelated traffic surge) 

causes a delay in the stream of position messages; 
3.  As a result of the delay, several messages ‘pile up’ and arrive 

at the same time at the receiver; 
4.  Processing this group of messages results in several 

coincident requests to draw the telepointer (assuming that no 
application-level buffering is done); 

5.  The display system draws each position, but the screen is 
refreshed with the next position too quickly for motion to be 
discerned by the user. 

6.  The viewer sees the telepointer jump from its initial position, 
where it had been frozen since the delay began, to the current 
location, without seeing the intermediate positions. 
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Figure 1. Example of pileup caused by network bottleneck in 
a stream of UDP messages sent at 100ms intervals. Messages 
1-8 are all basically on time and are spaced appropriately. 

Messages 9-14 are all delayed by a network bottleneck, and 
arrive at the receiver at the same time. The line of cursors at 
bottom shows the original spacing of pointer positions; at left 

shows which positions are drawn.  
Jitter has primarily been studied in streaming media, where is has 
been shown that people notice even very small variations in 
playback of sound and video files. Jitter has also been shown to 
cause problems for certain types of group interaction in 
groupware. For example, jitter delays of more than about 300ms 
make it more difficult for people to predict where another 
person’s telepointer is moving [12]; delays of more than about 
200ms make gesture interpretation more difficult [11]. 



 

 

4. MOTION PREDICTION 
Techniques for predicting an object’s location based on past 
positions has been explored in two main ways: first, as a way to 
maintain consistency in distributed simulations and networked 
games, and second, as a way to improve targeting in single-user 
interfaces. Both of these efforts are valuable in considering 
telepointer prediction, since the former is concerned with 
overcoming network delays, and the latter is specifically 
concerned with cursors. 
Motion prediction in distributed simulations and games is used to 
maintain a consistent world-view for each participant (e.g. [7,13]. 
Prediction is needed in these situations primarily because of 
network delay (both latency and jitter). For example, in a multi-
player game, a remote player’s avatar may appear to be in one 
position, but because of network delay, will actually be in a 
different location (e.g. [14]). When objects or avatars interact 
(e.g. shoot each other), these inconsistencies can lead to confusion 
(e.g. clear hits have no effect on the target). Therefore, most real-
time networked games use physically-based prediction schemes 
(generally called dead reckoning) to calculate location and 
motion.  
Dead-reckoning has been extremely successful in improving a 
game-player’s interaction with distributed objects (e.g. [5,8]), and 
this success suggests that the technique may also be effective for 
telepointers in groupware. However, one caveat is that dead-
reckoning is best applied to objects with force-based movement 
models and strong inertial properties (e.g. ships, vehicles, bodies), 
since inertia makes motion more predictable. Telepointers are 
moved through absolute positioning of a mouse, rather than by a 
force model, and therefore are able to move in more unpredictable 
ways than the objects typically found in games and distributed 
simulations.  
The second background area, target prediction, is not motivated 
by the problems of network delay, but does deal specifically with 
the issues involved in predicting cursor motion (e.g. [2,15,21]). 
Researchers in this area are interested in improvements to single-
user interaction with graphical interfaces; and more specifically, 
have investigated whether the eventual rest position of a cursor 
movement can be determined. The reason for making this 
prediction is to improve targeting time: for example, the user 
could save time by not having to move all the way to the target, or 
could have the predicted target expand as the cursor moved 
toward it. 
Some of these systems have been successful in laboratory 
experiments, and have used several prediction algorithms such as 
Kalman filters, neural networks, or non-linear regression (e.g. 
[2]). These results similarly suggest that telepointer prediction 
may have potential. Again, however, the techniques cannot be 
simply transferred to the groupware setting. Target prediction is 
concerned with eventual rest position, rather than path to get 
there, and is much more accurate with ballistic movements of the 
pointing device (which again introduce the benefits of inertia). 
Gestures involve slower controlled motion with more twists and 
turns that are more difficult to predict, and so it is not clear 
whether either dead-reckoning or target prediction methods will 
be effective in smoothing telepointer jitter.  
To determine whether telepointer prediction can be effective, we 
carried out two experiments. The first tested the effects of a real 
prediction algorithm on people’s abilities to interpret telepointer 

gestures, and the second considered the issue of how accurate any 
prediction scheme would have to be in order to cause a 
performance improvement.  

5. FIRST STUDY: THE EFFECTIVENESS 
OF A BASIC PREDICTION TECHNIQUE 

Our first study was intended as a pilot to get an initial idea of how 
a basic dead-reckoning technique would compare against an 
unaltered (i.e. affected by jitter) telepointer.  

5.1 Methodology 
5.1.1 Participants and Apparatus 
Eight paid participants (4 male, 4 female) were recruited from a 
local university. All participants were right handed and were 
frequent users of mouse and windows systems (at least 12 
hours/week). 
The experiment was conducted on a Dell Inspirion 4100 PC 
running a custom-built TCL/Tk application, using a 14-inch 
monitor set to 1400x1050 resolution. The study system presented 
a series of trials showing gestures drawn by a simulated 
telepointer.  

5.1.5 Gesture types and tasks 
The gestures in the study all involved the tracing of a shape or 
symbol, one common type of gestural communication. To test the 
interpretability of these shape gestures, we prerecorded a set of 33 
shapes (see Figure 2) that included letters, numbers, and simple 
strokes. The shapes were all approximately 10 cm in height when 
drawn on the screen. The participant’s task was to determine 
which of the 33 gestures was being shown on the screen; 
participants chose their answers from an answer sheet that showed 
all the gestures (similar to Figure 2) and entered their answer on 
the system. 

 
Figure 2. Shape gestures used in the study. The dot indicates 

where the gesture begins.  



 

 

5.1.3 Gesture Replay Mechanism  
The study used pre-recorded traces of gestures, in order to give 
each participant a consistent viewing experience. These traces 
contained time and position information that allowed the replay of 
the gesture in the experimental system. In addition, we were able 
to manipulate the replay of the gesture in order to create jitter and 
prediction conditions.  
The replay mechanism used the following rules: 

• The position information in the trace are extracted at a fixed 
rate (as if the remote cursor in a real groupware system was 
being sampled and sent at a fixed rate – e.g. every 30ms). 

• Jitter events are simulated by ‘holding back’ messages from 
the trace for a set amount of time (the jitter period), and then 
processing this group all at once. 

• In prediction conditions, messages in this jitter group were 
ignored during the jitter period, and position information is 
calculated based on the last known locations. 

• At the end of the jitter period, the actual position information 
is fed into the prediction algorithm, so that the next set of 
predictions always begin with true position data. 

• As soon as one jitter period was completed and the previous 
position information was delivered, another jitter event 
would start. 

• No correction was carried out; that is, no attempt was made 
to smoothly connect an erroneous predicted path with newly-
received actual position information. 

5.1.4 Prediction algorithm 
The algorithm used in the study is a basic dead-reckoning scheme 
similar to that used in distributed simulations. The algorithm 
predicts the next point based on three values: the most recent 
absolute position, the most recent change in x and y values (i.e. 
the velocity), and a rolling average of the recent changes in 
velocity (i.e. the acceleration).  

xnext = xprevious + velocityx + averageAccelerationx 
ynext = yprevious + velocityy + averageAccelerationy 

This technique allows curves to be predicted, and works fairly 
well at low jitter periods. Figure 3 shows that the scheme is 
reasonably accurate when predicting motion for 160ms; however, 
when predicting for 320ms, the errors become considerably larger 
(Figure 4). 

 
Figure 3. Prediction for shape #10 (see Figure 2), with jitter 
periods of 160ms. Dashed line and green dots indicate actual 

shape; grey line and red dots indicate predicted path. 

 
Figure 4. Prediction for shape 10 with jitter period of 320ms. 

5.1.5 Procedure 
Participants were introduced to the idea of telepointers and 
network delay, and were shown the experimental system. 
Participants then completed 60 trials which were grouped into 
eight blocks. For the lowest and highest jitter periods (considered 
to be boundary conditions), participants completed five trials per 
block; for the two middle jitter periods, participants completed ten 
trials per block. 
In each trial, the participant viewed a telepointer movement, and 
then entered into the system the identification number of the 
shape that they believed best fit what they had seen.  Participants 
were supplied with a list of the 33 shapes and their corresponding 
identification numbers. After each answer, the participant could 
continue to the next trial by pressing the space key on the 
keyboard. Upon completion of the 60 trials, participants 
completed a brief post-test. In this test, participants were shown 
two example gestures from each study condition, and were asked 
to indicate which example they preferred for telepointer motion. 

5.1.5 Experimental Design 
The first study compared participants’ interpretation accuracy 
when viewing either a jittered or a predicted stream of telepointer 
messages. We used a 2x4 within-participants mixed factorial 
design. The factors were: 

• Prediction Type: None (Jitter) or Dead Reckoning (DR) 

• Jitter period: 80ms, 160ms, 240ms, 320ms 
In total, 480 gestures were shown in the experiment. Data 
collection included decisions about what each gesture showed 
(collected by the experiment system), and the post-experiment 
questionnaire which recorded the participant’s preferences.  

5.2 First Study Results 
Our goal in the first study was to determine whether participants 
would be more accurate in interpreting gestures when prediction 
was used, and whether participants would prefer prediction over 
the corresponding jitter conditions. The results reported below are 
organized around these two issues. 

5.2.1 Accuracy 
Figure 5 shows the mean percentage of correct answers for each 
jitter period, for both prediction and no prediction. ANOVA 



 

 

showed no significant accuracy differences related to the use of 
prediction (F1,7=2.24, p=0.14). In addition, as can be seen from 
the figure, accuracy is lower at jitter periods of 240ms and 320ms.  
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Figure 5. Mean interpretation accuracy for all jitter periods. 
It was clear that at lower jitter periods, people do not have much 
difficulty ‘filling in the gaps’ caused by jitter. Therefore, in the 
situations where the dead-reckoning algorithm was accurate, there 
is very little room to improve people’s performance. As the jitter 
period increases, making interpretation more difficult, the error of 
the dead-reckoning algorithm also increased, reducing the 
effectiveness of the technique. 

5.2.2 Preference 
Table 1 shows participants’ preferences for either prediction or no 
prediction, for each jitter period. At jitter periods of 80ms and 
160ms, all participants preferred the predicted telepointer; at 
240ms, preference was mixed; and at 320ms, prediction was no 
longer seen as an improvement over the normal jittered 
telepointer. 

Table 1. Preference results (number of participants)  
for each jitter period. 

Prediction type 80ms 160ms 240ms 320ms 

Dead reckoning 8 8 4 0 

No prediction 0 0 4 8 

6. SECOND STUDY: HOW ACCURATE 
DOES PREDICTION NEED TO BE? 

The first study suggests that it will be difficult for a dead-
reckoning algorithm to improve interpretation performance if the 
error of the predictions grows more quickly than the problems 
caused by the jitter itself. To determine just how accurate any 
prediction scheme would have to be to significantly improve 
performance, we carried out a second study with jitter periods that 
were larger than those used earlier.  

6.1 Methodology 
6.1.1 Participants and Apparatus 
Eighteen paid participants (13 male, 5 female) were recruited 
from a local university. All participants were right-handed and 
were frequent users of mouse-and-windows systems (at least 12 

hours/week). Ten of the eighteen participants had some 
experience playing multiplayer games. 
The experimental setup was similar to that used in the first study 
(Section 5.1.1), except that the software was modified to use a 
different set of jitter conditions and a different prediction 
algorithm.  

6.1.3 Artificial Prediction Schemes 
The prediction algorithm was developed using a Wizard-of-Oz 
strategy to allow manipulation of the degree of prediction 
accuracy that the algorithm could attain. Because the system has 
knowledge of the real future positions of the telepointer (since we 
have the entire trace), we can determine a set of artificial 
prediction schemes with varying levels of accuracy. 
In the second study, we created artificial predictors with a range 
of accuracies between simple linear prediction and perfect 
prediction. Linear (i.e. straight-line) prediction was used as the 
baseline because it can easily be implemented in any groupware 
system. With linear prediction, and with foreknowledge of the 
actual positions, we can manipulate the accuracy of the artificial 
prediction schemes by translating each predicted point a certain 
percentage of the distance between the linear predicted point and 
the actual point (see Figure 6).    

 
Figure 6. Artificial prediction techniques. Inside line (P0) is 
the actual shape, outside line is linear prediction (P100). The 

three lines in between (P75, P50, P25) represent different 
error amounts compared to linear prediction. 

The relative-to-linear categorization that was used to create these 
prediction schemes, however, is inappropriate for comparison 
with other techniques. Therefore, we also calculated a measure of 
their absolute error for each jitter period. We chose mean 
maximum error (MME) as a reasonable indication of absolute 
error. Mean maximum error is the average distance from the 
actual position of the most erroneous predicted point in each jitter 
period. We believe that this measure is more appropriate than 
overall average error, because it appeared to be the large 
deviations that caused problems for interpretation in the first 



 

 

study. The MMEs for the five prediction schemes are shown in 
Table 2. 
For comparison, the dead-reckoning algorithm used in the first 
study has an MME of 188 pixels at 320ms, and of 406 at 480ms. 

Table 2. Mean maximum error amounts (in pixels) for 
prediction schemes used in second study 

Scheme Description MME 
(320ms) 

MME 
(480ms) 

P100 Linear 160 260 

P75 Artificial predictor with  
75% of linear error 

120 195 

P50 Artificial predictor with  
50% of linear error 

80 130 

P25 Artificial predictor with  
25% of linear error 

40 65 

P0 Perfect prediction 0 0 
 

6.1.5 Procedure 
Participants were introduced to the study in a similar way to that  
described above (Section 5.1.5). Participants then carried out a set 
of 25 practice trials, and then completed 120 test trials grouped 
into 12 blocks (10 trials in each study condition). Again, each trial 
involved viewing a remote cursor movement and then identifying 
the shape that was drawn. Participants were allowed to rest 
between blocks. 
Upon completion of all trials participants completed a brief post-
test that was similar to that used in the first study. In the test, 
participants were shown example gestures from the different 
study conditions and were asked to indicate their preferences.   

6.1.4 Experimental Design 
The second study also compared participants’ interpretation 
performance when viewing telepointer gestures with a range of 
prediction schemes. We used a 6x2 within-participants mixed 
factorial design. The factors were: 

• Prediction Type: None (Jitter), P100 (Linear), P75, P50, P25, 
or P0 (Perfect) 

• Jitter period: 320ms or 480ms 
With 18 participants and 10 trials per condition, 2160 gestures 
were shown in total. Data collection included decisions about 
what each gesture showed and elapsed time to make each decision 
(collected by the experiment system), and the post-experiment 
questionnaire which recorded the participant’s preferences.  

6.2 Second Study Results 
Results from the second study are presented below, organized by 
interpretation accuracy and response time. 

6.2.1 Interpretation Accuracy 
Figure 7 shows the mean rate of correct answers for each 
prediction type. As expected, ANOVA shows a significant main 
effect of prediction type (F1,17=19.0, p<0.001). To determine the 
minimum level of accuracy needed to significantly improve 
performance over no prediction, we carried out post-hoc t-tests 
comparing the no-prediction condition to each other scheme. 

Results of these tests were similar for both jitter periods: there 
was no difference between no-prediction and P100 (linear 
prediction), but all of the other schemes showed significant 
differences (see Table 3). 
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Figure 7. Mean interpretation accuracy for all prediction 

techniques. 

Table 3. T-test comparisons (two-tailed) between no 
prediction and other schemes, for 320ms data. 

Comparison to: p Actual difference  in 
interpretation accuracy 

P100 0.28 0% 

P75 <0.001 3% 

P50 <0.001 8% 

P25 <0.001 9% 

P0 <0.001 9% 

The artificial predictor P75 (which had 75% of the error of linear 
prediction) is the first predictor that is significantly different from 
no prediction. Using the absolute error values given above 
(Section 6.1.3), any prediction algorithm could therefore 
significantly improve interpretation if it had an MME of 40 pixels 
at 320ms jitter, or 65 pixels at 480ms jitter. 

6.2.2 Response Time 
We also considered how response times (the time it took 
participants to enter their answer) varied across prediction types. 
Figure 8 shows mean response times for each type; the results are 
similar to those for interpretation accuracy. There was a main 
effect of prediction type (F1,17=27.9, p<0.001), and post-hoc t-
tests showed that the first predictor to be significantly different 
from no prediction was P75 (p<0.05). 
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Figure 8. Mean time to answer for all prediction techniques. 

7. DISCUSSION 
In the following paragraphs, we discuss several issues that arise 
from the two studies reported above. We first summarize the 
results, and then consider whether telepointer prediction should be 
part of groupware systems, either on the grounds of assisting 
interpretation or on the grounds of user satisfaction. We then 
examine other potential benefits of prediction, such as the idea of 
using prediction to make groupware communication more 
efficient. 
The main results from the first study were that basic dead 
reckoning does not improve gesture interpretation, primarily 
because prediction error increases along with the jitter period; 
however, participants all preferred the predicted presentation at 
low jitter periods. The second study showed that a prediction 
algorithm would require a mean maximum error of 40 pixels in 
order to make a significant improvement in interpretation. This 
error rate corresponds to 75% of the error of linear prediction.  
Effectiveness of telepointer prediction. For improving 
interpretation of gestures, telepointer prediction remains a 
difficult task. Even though a prediction scheme needs only 
outperform linear prediction by a small margin, this may be 
difficult to do. For example, the dead reckoning algorithm used in 
the first study (a technique that has been successful in many 
networked games) actually has a higher MME than linear 
prediction at both 320ms and 480ms. This suggests that 
telepointers may not be amenable to higher-order models that use 
velocity and acceleration, and consequently that more 
complicated prediction schemes (e.g. Kalman filters or non-linear 
regression) may also have difficulty with telepointer motion 
during gestures. However, we leave to future work the 
classification of other prediction schemes in terms of our 
framework (to facilitate testing, the shape gesture data used in our 
studies can be obtained from 
hci.usask.ca/projects/prediction.xml). 
However, the studies also show several positive results for 
prediction. First, the gestures tested in our studies are likely one 
of the most difficult prediction tasks available (and were chosen 
for this reason) due to the large number of curves and corners in 
the shapes. There are several types of telepointer motion that 
should be easier to predict. For example, moving to a particular 
point in the workspace, which is also negatively affected by jitter 

[12], involves much more straight-line motion than the gestures 
studied here.  
Second, the second study showed that the performance of a very 
simple prediction technique (linear prediction) was surprisingly 
good at higher jitter periods – in that it was no worse than no 
prediction. This at least means that prediction need not reduce 
interpretation performance. This is important, because one of the 
main benefits of prediction appears to be in increasing user 
satisfaction. There was a strong preference for the smoothness 
provided by the prediction techniques (as long as the prediction’s 
errors did not cause more problems than the original jitter). This 
implies that predicting may be well worth using in groupware, 
even if it is unclear whether it will improve interpretation. 
Other uses of prediction. The success of prediction techniques at 
low jitter periods raises the possibility of using these mechanisms 
for a new purpose – not to combat existing jitter, but rather to 
tune the network distribution and presentation performance of the 
groupware system. From our empirical results, it appears that a 
groupware system does not need to send every telepointer 
position as a separate message: it should be possible to send fewer 
messages (although still including all data points) and simply 
predict those points that have been delayed (this essentially adds 
controlled artificial jitter at the application level). This would 
allow systems to reduce telepointer messages by a considerable 
amount (e.g. 5-10 times, based on the data of our first study) – or 
alternatively, to send a much higher-granularity message stream 
without requiring additional message traffic.  
This idea also suggests a more general approach to the problem of 
telepointer performance. It is possible that the sending of a 
telepointer’s position can be decoupled from its screen 
representation, and these two entities can be modeled 
independently. Using prediction allows groupware to stop treating 
telepointers as an event-driven system, and avoid some of the 
problems that occur when events with temporal requirements are 
sent over inconsistent networks like the Internet. This approach 
suggests, for example, that each client can sample and send cursor 
information at its own optimal rate (depending on factors such as 
processor load); but receiving clients can update the telepointers 
based on their local redisplay frequency. This could lead to a 
groupware user experience that is more natural than what has 
currently been possible. 

8. FUTURE WORK 
In future work, we plan to continue this research in three ways. 
First, we will implement and categorize other existing prediction 
techniques to test their accuracy on our data sets; if any of these 
have a lower MME than linear prediction, we will test its efficacy 
in a further user study. Second, we plan to develop the idea of 
decoupling telepointer display from sampling and distribution; 
one goal is to build an adaptive system that can optimize the 
distribution rate and the displayed update frequency based on 
current network conditions. Third, we plan to consider how 
prediction techniques work with other telepointer enhancements: 
for example, with historical traces [10] or delay indicators [4]. 

9. CONCLUSION 
Telepointers are important parts of many groupware systems, both 
for providing a sense of presence for remote participants, and for 
conveying awareness information and gestural communication. 



 

 

However, the quality-of-service requirements for delivering 
smooth and natural telepointer motion are not often met on 
networks such as the Internet. In this paper, we proposed the idea 
of telepointer prediction – based on techniques seen in distributed 
simulations and games – as a way to smooth telepointers in jittery 
networks. We ran two studies to explore the effectiveness of 
telepointer prediction on people’s abilities to interpret gestures.  
Although the studies show that it may be difficult to successfully 
improve interpretation, it was clear that people liked the smoother 
motion provided by prediction techniques. Given that there are 
simple techniques that (at least) do not appear to degrade 
interpretation, we suggest that telepointer prediction should be 
considered as a way to improve user satisfaction with real-time 
groupware. 

9. REFERENCES 
[1] Baldwin, J., A. Basu and H. Zhang, Predictive Windows for 

Delay Compensation in Telepresence Applications, Proc. 
1998 IEEE International Conference on Robotics and 
Automation, Leuven, Belgium, May 16-20, 1998. 

[2] Baldwin, J, Basu, A., and Zhang, H., Cursor trajectory 
prediction with a Kalman filter, in Proceedings of the 1998 
IEEE International Conference on Robotics and Automation, 
1998, pp 2884-2889. 

[3] Bekker, M., Olson, J., and Olson, G. Analysis of Gestures in 
Face-to-Face Design Teams Provides Guidance for How to 
Use Groupware in Design. Proc. DIS'95 Symposium on 
Designing Interactive Systems, 1995, 157-166. 

[4] Benford, S., Bowers, J., Lennart, E.F., Greenhalgh, C., 
Snowdon, D. User embodiment in collaborative virtual 
environments. Proc. ACM CHI’95, 1995, 242 – 249. 

[5] Capin, T., Pandzic, I., Thalmann, D., Magnenat-Thalmann, 
N.,  A Dead-Reckoning Algorithm for Virtual Human 
Figures, Proc.VRAIS'97 (IEEE Press), Albuquerque, USA, 
pp.161-168, 1997 

[6] Conner, D.B. and Holden, L.S., Providing a Low-Latency 
User Experience in a High-Latency Application. 
Proceedings of 1997 Symposium on Interactive 3D Graphics, 
Providence, Rhode Island, April 27-30, 1997. 

[7] Diot, C., and Gautier, L. A Distributed Architecture for 
Multiplayer Interactive Applications on the Internet, IEEE 
Networks, Vol. 13, No. 4, pp.6-15, July-August 1999. 

[8] Durbach, C. and Fourneau, J-M, Performance Evaluation of 
a Dead Reckoning Mechanism, Proceedings of the Second 
International Workshop on Distributed Interactive 
Simulation and Real-Time Applications, IEEE Press, 1998, 
Montreal, Canada, pp. 23-32. 

[9] Greenberg, S., Gutwin, C., and Roseman, M. (1996), 
Semantic Telepointers for Groupware. Proc. OzCHI '96, 
Hamilton, NZ. 

[10] Gutwin, C. Traces: Visualizing the Immediate Past to 
Support Group Interaction. Proceedings of  Graphics 
Interface 2002, Calgary, 2002 

[11] Gutwin, C., and Penner, R. (2002) Improving Interpretation 
of Remote Gestures with Telepointer Traces. Proceedings of 
ACM CSCW 2002.  

[12] Gutwin, C. The Effects of Network Delays on Group Work 
in Real-Time Groupware. Proc. 7th European Conference on 
CSCW, Bonn, 2001, 299-318. 

[13] Macedonia, M., Brutzman, D., Zyda, M., Pratt, D., Barham, 
P., Falby, J., and Locke, J., NPSNET: A Multi-Player 3D 
Virtual Environment Over the Internet, Proceedings of the 
1995 Symposium on Interactive 3D Graphics, 9, Monterey, 
California, 1995. 

[14] Mauve, M., How to Keep a Dead Man from Shooting, Proc. 
7th International Workshop on Interactive Distributed 
Multimedia Systems and Telecommunication Services 
(IDMS) 2000. 

[15] Murata, A., Improvement of Pointing Time by Predicting 
Targets in Pointing with a PC Mouse, International Journal 
of Human-Computer Interaction, 1998, 10, 1, pp 23-32. 

[16] Park, K. and Kenyon, R. (1999), Effects of Network 
Characteristics on Human Performance in the Collaborative 
Virtual Environment. Proc. IEEE Virtual Reality '99, March 
14-17, 1999. 

[17] Segal, L. Designing Team Workstations: The Choreography 
of Teamwork, in Local Applications of the Ecological 
Approach to Human-Machine Systems, P. Hancock, J. Flach, 
J. Caird and K. Vicente ed., Erlbaum, Hillsdale NJ, 1995, 
392-415. 

[18] Tang, J. Findings from Observational Studies of 
Collaborative Work, International Journal of Man-Machine 
Studies, 34(2), 1991, 143-160.  

[19] Tatar, D., G. Foster, and D. Bobrow. Design for 
Conversation: Lessons from Cognoter, International Journal 
of Man-Machine Studies, 34(2), 1991, 185-210.  

[20] Vaghi, I., Greenhalgh, C., and Benford, S. (1999), Coping 
with Inconsistency due to Network Delays in Collaborative 
Virtual Environments. Proc. ACM Workshop on Virtual 
Reality and Software Technology, 1999, 42-49.  

[21] Wu, J., and Ouhyoung, M., A 3D Tracking Experiment on 
Latency and Its Compensation Methods in Virtual 
Environments, Proc. ACM Symposium on User Interface and 
Software Technology, 1995, pp. 41-49. 

 
 
 

 


