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ABSTRACT 

The goal of real-time distributed groupware is to support 
synchronous work at a distance, but if these systems are to 
succeed, they must find ways to deal with real-world network 
issues more effectively. One rich area that can provide network 
techniques for groupware is network gaming: network games 
have more than a decade of experience building collaborative 
applications that perform well on the Internet. The techniques 
used by games have not traditionally been made public, but 
several game networking libraries have recently been released as 
open source, providing the opportunity to learn how games have 
achieved their network performance. We examined five game 
libraries to find networking techniques that could benefit 
groupware; this paper presents the most valuable concepts that we 
found. The techniques deal with limited bandwidth, reliability, 
and latency, and include both known techniques and principles 
that have not been seen before in the groupware community. By 
adopting these techniques, real-time groupware can dramatically 
improve network performance on the real-world Internet. 

Categories and Subject Descriptors 
H.5.3 [Information Interfaces and Presentation]: Group and 
Organization Interfaces—Computer-supported cooperative work. 

General Terms 
Performance, Design, Reliability. 

Keywords 
Networking, Quality of Service, Network Games, CSCW, 
Groupware, TNL, Raknet, Zoidcom, Enet, Zig. 

1. INTRODUCTION 
The goal of real-time distributed groupware is to support 
synchronous shared work at a distance. In order to achieve this 
goal, groupware must perform well on real-world wide-area 
networks like the Internet; but although many systems succeed in 
the research lab, network performance becomes a major problem 
when they move beyond the LAN and into the real world. On a 
local area network, it is easy for any networking infrastructure to 
perform well, since bandwidth is plentiful and packet loss is rare. 
On real world networks, however, bandwidth is limited and 
packet loss is common, and current approaches to networking for 
CSCW applications quickly run into severe difficulty with 
network delay. Delays cause problems for visual communication, 
coordination of actions, and anticipation, and generally reduce the 
richness and quality of real-time collaboration [10]. If real-time 
groupware is to succeed, it must find ways to reduce delay, and 
the most obvious place to start is in the infrastructure that 
groupware systems use to communicate over the network.  

There are several disciplines that could be used as a source of 
ideas for improving groupware networking: for example, there is 
a great deal of research in video distribution, voice over IP, and 
distributed simulation. Although this research is valuable (see [5] 
for a survey), the data used in these domains often has very 
different characteristics and different quality of service (QoS) 
requirements than the messages used in groupware systems, and 
the networking techniques are as a result less applicable to 
groupware. There is, however, one area of previous work that has 
much in common with real-time groupware – in fact, that is a type 
of real-time groupware – and already has a proven record in 
efficient networking. That area is networked multiplayer games.  

The network gaming industry has more than a decade of 
experience in delivering a high-quality multiplayer experience 
over the Internet, with millions of users and thousands of game 
titles. Games also have more in common with groupware than 
other types of distributed systems: they send short, frequent 
messages that are generated from human interaction with the 
system, and they send several different types of messages with 
different requirements for reliability and latency. A reasonable 
starting point for improving groupware networking, therefore, is 
to determine how games send information, and evaluate the 
applicability of these techniques for groupware. Learning how 
games deal with networking, however, is difficult since game 
companies do not generally publicize their techniques, since 
source code is usually proprietary, and since capturing network 
packets violates license agreements. This has limited what can be 
discovered from games, and previous surveys (e.g., [16]) have 
primarily been based on academic research papers; as a result, 
many of the novel aspects of game networking have remained 
undocumented in academic literature. 

Recently, however, the source code for several game networking 
libraries has been released, providing an opportunity to determine 
exactly how games have achieved their network performance. 
These libraries provide a more comprehensive look at networking 
than do individual games, since the libraries bring together more 
techniques than are used in any single game, and since the 
techniques have been generalized to the point that they can be 
used for a variety of games in several genres. We inspected five 
different game networking libraries – TNL, Raknet, Zoidcom, 
Enet, and Zig – to find out how they achieve good network 
performance, and we discovered several networking techniques 
and principles that have not been considered before by groupware 
researchers. This paper presents these techniques and principles, 
and shows how they can be useful to other types of real-time 
distributed groupware. The techniques address the three critical 
issues that both games and groupware must deal with on the 
Internet, limited bandwidth, reliability, and latency, and are 
organized according to the problems they solve. 



There are two contributions of our work. First, we have brought 
together a set of networking principles and techniques that have 
been extensively tested by the gaming industry. Even though 
some of the techniques in the list have been seen before in other 
network research, it is valuable to know which principles have 
stood the test of time and been proven valuable enough to retain a 
place in the networking libraries. Second, some of the variations 
of these techniques have not been seen before by the research 
community, and we describe these techniques in greater detail. 
These new variations of techniques are the result of two 
fundamental characteristics of both groupware and games – that 
messages are small, and that messages have diverse QoS 
requirements – characteristics that can lead to further research on 
techniques tailored for the needs of real-time distributed systems. 

2. NETWORKING IN ACADEMIC 
GROUPWARE 
Academic groupware that sends real-time awareness information 
is restricted to the LAN because of its approach to networking. 
Not all academic groupware is built in the way that this section 
describes, but it is the most common approach to networking in 
academic toolkits and applications that we have observed. 
We refer to this method of networking as event-driven TCP. 
Using this method, the application’s event model triggers events 
that result in information that needs to be sent over the network. 
This information is immediately packaged into a TCP packet and 
sent. Therefore, packet rate is governed by the application’s event 
model. This works fine when events are rare and guaranteed 
delivery is required, like in a chat application, because the amount 
of information sent over the network is small and network 
performance does not affect usability. However, for interaction 
techniques that require updates to be sent frequently, such as 
telepointers, event-driven TCP does not work well when 
groupware applications are used over the Internet. 
For example, GroupKit [9] uses event-driven TCP for sending its 
messages. Telepointer messages are generated and sent on mouse 
interrupts with one message in each packet, which typically 
produces packet rates that are between 30 and 60 telepointer 
updates per second. Each of these packets is sent via TCP/IP, 
which has a header size of 40 bytes, and each of the text-based 
telepointer messages has a size of approximately 50 bytes. This 
produces an upload data rate from moving a telepointer across the 
screen of around 32Kbps for every user that the messages need to 
be sent to. In a 4-user shared whiteboard session with a peer-to-
peer unicast network architecture, this results in an upload 
bandwidth requirement of 128Kbps for each user, which is more 
than many common home Internet packages currently provide. 
When bandwidth is not sufficient to carry the telepointer 
messages, messages are queued in the sender’s outgoing TCP 
buffer, and the motion at the receiver lags behind and slowly 
catches up between mouse movements. 
Even for those users with sufficient bandwidth, performance may 
still be poor due to the reliability and bandwidth throttling 
mechanisms used by TCP. Using TCP, when packets are lost or 
delivered out of order, incoming packets are blocked at the 
receiver and no information is processed until messages are 
received in order. TCP resends lost messages whether they are 
still useful or not, and the receiver waits for these late messages 
before unsynchronized information can be processed. For 

example, in a shared whiteboard application, a lost telepointer 
update message means that all messages are blocked, including 
non-dependent ones like tool selections and chat messages, until 
the telepointer message arrives. Upon arrival, this telepointer 
update is late and does not represent the location of the sender as 
well as other blocked information, and other messages are all 
delayed while waiting for this late telepointer position. The result 
is that upon arrival, the ordered burst of messages is processed 
together faster than the display can display the result, producing 
an appearance of the telepointer jumping across the screen in an 
unnatural way. This behaviour has a negative impact on usability, 
making actions hard to coordinate and gestures hard to recognize, 
as well as causing telepointer motion to break down [10]. 
Although GroupKit is an older groupware toolkit, it still serves as 
a representative example of how many academic groupware 
toolkits can work. For example, based on documentation and on 
packet traces we performed on sample applications, Disciple [12], 
Java Shared Data Toolkit [3], Collabrary [2], MAUI [11], 
CoWord and CoPowerPoint [17], JAMM [1], Clock [8], and 
Habanero [4] all handle networking in a similar fashion. Some of 
these toolkits offer additional networking options (e.g. Java 
Shared Data Toolkit supports the lightweight reliable multicast 
protocol), however, the default is to use event-driven TCP. 

3. OPEN SOURCE GAME LIBRARIES  
The methodology used in this study was to examine open source 
game networking libraries to find networking techniques that can 
benefit groupware. We began by identifying all of the open 
source game networking libraries that are mature, recommended 
for use on game development web sites, and in use in existing 
games. We thoroughly read through their documentation, reverse 
engineered their designs, and inspected source code, noting any 
networking techniques that are used. The main tool we used for 
reverse engineering and source code inspection was Understand 
for C++ [15]. This process produced a list of the networking 
techniques used in each of the open source libraries. We then 
categorized the networking techniques according to the problems 
they solved and evaluated how effective they would be for 
groupware based on how well they solved groupware’s latency, 
jitter, and bandwidth problems. This produced a list of the most 
important and useful techniques that appear in network games. 
We then identified which of the techniques were novel to 
groupware based on what had been published previously in the 
groupware academic community. Last, we analyzed what led to 
the development of these techniques. 

3.1 Game networking libraries 
The Torque Network Library (TNL) [7] is derived from the 
network code used in the multiplayer games Starsiege: Tribes and 
Tribes 2. Tribes is a first person shooter (FPS) game that supports 
up to 32 users. Unlike most FPS games of its time, Tribes was 
situated in an outdoor setting where many users could see each 
other at once, and the traffic filtering technique based on visibility 
that was used in indoor FPS games was not as effective, meaning 
that Tribes had to send unprecedented amounts of information 
over the 28.8 Kbps modems it was designed to work with. As a 
result, much network optimization was needed to accommodate 
its design. The Tribes network code was further evolved for its 
sequel, Tribes 2, which included improvements based on the 
lessons learned in Tribes. After Tribes 2 was completed, the 



networking code was packaged by its developers into a general 
purpose, stand-alone library called TNL, which was offered 
commercially and has been used in many successful independent 
and commercially developed games. 
Raknet [13] is a commercially developed game networking library 
that has been used in several commercial multiplayer game 
releases since 2002. It is frequently recommended by game 
developers on game development message boards, both for its 
ease of use and high performance. In 2004, the source code was 
released, and commercial licenses were offered for free. 
Zoidcom [14] is a full-featured commercial game networking 
library that first appeared as a beta release in 2004 and is still in 
beta development as we write this paper. The full source code for 
the library is not available, but the C header files are included and 
it is well-documented, which reveal several performance-
enhancing techniques that are relevant to this study. No 
commercial game releases that use Zoidcom are available yet, but 
it has been used in several independent game projects. 
Enet [6] was developed as part of an open source first person 
shooter game called Cube, which was first released in 2002 and 
has been an active project since then. The Enet library is offered 
as a separate, stand-alone networking library and is freely 
available for unlimited open source and commercial use. It offers 
only low-level services, which include session management, 
network monitoring, reliable UDP transport, and flow control. 
Although it has fewer features than the other libraries presented 
here, Enet’s design is well-considered and carefully tailored for 
the needs of games for the features it supports. 
Zig [18] first appeared as an open source project in 2002 and has 
been an active project since then with regular releases. It is not 
yet in popular use and it has comparably fewer performance-
enhancing features than the other game libraries in this study. It 
has been included here because of the unique compression and 
aggregation techniques it uses, which are described further below. 

4. GAME NETWORKING TECHNIQUES 
Game network libraries have been designed to minimize some of 
the effects of the most critical network problems that affect 
usability: limited bandwidth, packet loss, and latency. In this 
section, we present the most important methods for solving these 
three problems that we found in the game libraries. 

4.1 Bandwidth conservation 
Game libraries are designed both to minimize bandwidth usage 
and to cope gracefully when bandwidth is constrained. The 
bandwidth minimization techniques used in the game libraries fall 
under four main categories: encoding and compression, rate and 
flow control, aggregation, and priority scheduling. 

4.1.1 Encoding and compression 
The single most important technique for reducing bandwidth is to 
use minimal representations for the traffic being sent. Game 
networking libraries encourage this by making it easy for 
application programmers to efficiently encode information, by 
making use of dynamically built string lookup tables, and by 
compressing strings automatically. 
Minimum bit-length encodings: Raknet, Zoidcom, and Zig use a 
similar approach to encoding primitives, where they enable game 
programmers to easily encode their network traffic efficiently. 

They provide a bit encoder that makes writing primitives to a bit 
stream a single method call. This approach results in the 
application programmers sending only the values as primitives to 
the network – no parameter names are sent and primitives are 
never sent inefficiently as strings. TNL improves the efficiency of 
this process by allowing the application programmer to specify 
the number of bits to use to encode each primitive. For example, 
an integer with a maximum value of 5 can represented using 3 bits 
in TNL, while the other libraries would write a full byte since a 
byte is the smallest primitive they support. The TNL method can 
achieve optimal bit-length representations, but requires the 
application programmer to calculate the number of bits that 
should be used to represent each value. An example of 
compressing a payload for TNL is shown in Figure 1. 
 bool b = true; 
 U32 i = 5; 
 float f = 0.123; 
 stream->writeFlag(b); 
 stream->writeFloat(f, 7); 
 stream->writeInt(i, 3); 

b=true     i=5                  f=0.12345

0    1             4                                11

 

Figure 1: TNL includes methods for writing each primitive to a 
bit stream, where the first parameter is the value and the second is 
the number of bits to use to represent the value. The above code 

would represent the int, float, and boolean as 11 bits total. The 7-
bit float value loses precision and is read as 0.118 at the receiver. 

String lookup tables: In games, strings are the most costly data 
type to send, as each character requires a full byte to encode. 
Therefore, a mechanism for encoding strings that are sent 
repeatedly as a numeric id can be an effective optimization. 
However, to do this effectively, we must know which strings will 
be sent by the application, and this has dependencies on the game, 
runtime parameters such as usernames and user-configured chat 
hotkeys, and tasks that are performed within the game. 
TNL uses a string lookup table that is generated dynamically at 
runtime. Applications add strings that are expected to be repeated 
to the lookup table, they send the string table additions to the 
other clients, and then they send these strings as a numeric id 
from that point on. A string can be a single word or a phrase. This 
dictionary-based approach is well-suited to games since they 
often send the same strings repeatedly in a session. An example of 
adding a string to the dictionary is shown in Figure 2. 
  static StringTableEntry returnString( 
                "%e0 returned the %e1 flag."); 
Figure 2: String tables are used to encode commonly occurring 
strings at runtime. In this example, %e0 and %e1 are both names 
of players, which vary based on the application instance. Once 
added to the string table, strings can be sent as numeric string IDs, 
as shown in figure 3. 
Registered remote procedure calls (RPCs): RPCs are a signal to 
call a method remotely. The method signature and parameters for 
the method must be sent over the network. An efficient encoding 
for RPCs is to use an id for the method, which implied the 
parameter structure, and followed by a minimum bit-length 
representation for the parameter values.  
In TNL, RPCs function in this way. The signatures for RPCs are 
registered with other clients during runtime as a dictionary entry 



with a unique numeric ID. The signature for an RPC includes the 
procedure name as well as its parameter list as minimum bit-
length representations. When sending an RPC, the procedure is 
encoded efficiently as an ID and a set of minimum bit-length 
parameter values. An example is shown in Figure 3. 
Lossless compression: Game libraries use several approaches to 
applying lossless compression within individual messages, 
strings, and packets. The techniques we observed vary greatly, 
from per-string Huffman encodings to lossless compression 
applied to entire packets. There seems to be no standard 
compression method that all gaming libraries agree upon. 
 DECLARE_RPC(hitShip,  
             (StringTableEntry victim, U16 time)); 

rpc_id=12 victim=17     time=94752

0         8       16        24       32

 
Figure 3: A sample of encoding an RPC using an approach similar 
to TNL’s. The RPC method’s id rpc_id is encoded as a 8-bit 
numeric id, and parameters are encoded using minimum bit-
length representations. Here, the string victim is a numeric 8-bit id 
for a string in the string lookup table, and the parameter time is a 
16-bit representation of the system time. 
TNL compresses strings that are not inserted into its string table 
using Huffman coding. Since strings sent by games are often 
short, Huffman coding can produce a less efficient representation 
due to the amount of character repetition being small in short 
strings. The TNL Huffman coder is aware of this, and although it 
encodes all strings, it only sends the encoded version if it is 
shorter than the non-encoded version, adding a 1-bit flag to the 
beginning of the string payload to identify if it is compressed. 
The Raknet String compressor functions similarly to TNL’s – it 
applies Huffman coding on a per-string basis. One optimization in 
Raknet is that it maintains frequency charts for the occurrences of 
characters in Strings, and the Huffman tree can be rebuilt at 
runtime and sent to other clients based on the current frequency 
charts to ensure that the encoding fits the application. This is 
useful since the character frequencies in strings sent by games 
may vary based on the application type, runtime parameters, and 
the task. Raknet’s encoding algorithm also combines dynamic 
Huffman encoding with LZ-encoding, and so its approach is best 
described as dynamic LZH compression. 
Zig compresses entire packet payloads rather than individual 
strings. This can be advantageous since there may be more 
character pattern repetition in the full packet and efficiencies can 
be greater than when compressing only single strings. The 
compressor Zig uses is the Bzip2 library. Since Bzip2 can 
produce a longer result than the original when there are few 
repeating patterns, Zig only accepts the compressed value if it is 
smaller than the original. Zig adds a further enhancement where 
the programmer can specify the smallest packet payload to 
compress, which skips the compression process on small packets 
that are less likely to benefit from compression. Zig also keeps 
track of compression ratios, which the programmer can use to 
adjust the payload size threshold. 

4.1.2 Rate and flow control 
Exceeding bandwidth limits causes severe usability problems. To 
prevent this from happening, game networking libraries make use 
of three main techniques: bandwidth monitoring, static rate 
control, and adaptive flow control. 
Bandwidth monitoring: Different games may require different 
methods for reacting to limited bandwidth, and in some cases, the 
decision for how to react is better left to the application 
programmer. To enable the application programmer to more 
easily react to changes, all networking libraries include methods 
for monitoring the amount of bandwidth used. Information 
available includes the current amount of incoming and outgoing 
bandwidth available, based on what has been sent over the past 
second, ping times, loss rates, packet window sizes, and outgoing 
queue sizes. No two libraries provide the exact same information, 
but each provides sufficient network information to enable the 
programmer to make well-informed adaptive decisions. TNL 
further simplifies the task of adapting to the network by offering 
virtual methods specifically for reacting to network resources that 
the programmer can override with their own adaptive logic. 
Network rate control: Sometimes, game programmers know what 
minimum send rates are acceptable for their games. TNL allows 
the programmer to apply a rate control policy that maintains 
specified minimum and maximum send and receive rates. The 
fixed policy uses a credit system where not sending information 
earns the sender up to one second worth of send rate credit. The 
credit can then be used when there is a burst of information to be 
sent at once. The TNL default is to use this fixed policy with a 96 
ms delay between packets (~10 packets/second). 
Object rate control: TNL, Raknet, Zig, and Zoidcom support 
object replication, and the rate control technique used for objects 
is to let the application programmer specify a maximum (and 
minimum with Zoidcom) update rate for each replicated object. 
The update rate adaptively changes according to the ranges 
specified for each replicated object and the network conditions. 
Adaptive flow control: One method for not exceeding the amount 
of available bandwidth is to monitor and adapt to the amount of 
packets currently in the network, called the window size. This 
requires acknowledgements to be sent so that the sender knows 
that a packet is out of the window. This works well for reliable 
information since the acknowledgements are being sent anyway. 
However, games send much of their traffic unreliably, so they 
have to use alternate mechanisms for controlling flow since there 
are no acknowledgements sent. 
TNL’s adaptive flow control policy uses an adaptive window size 
to control its send rate. When packets are received, it increases its 
window size up to a preconfigured maximum, and when packets 
are lost, the send window is decreased. The send timer then 
checks that there is room in the send window and only sends if 
there is room to send another packet. Since much of the game 
traffic is unreliable the sender needs feedback on its loss rates, so 
TNL periodically sends ACKs and NACKs to the sender solely 
for the purpose of adapting the window size. This is best 
characterized as a receiver-driven flow control mechanism.  
Enet uses an adaptive flow technique, but the approach is quite 
different than the one used in TNL. The main difference is that 
Enet does not acknowledge any non-reliable messages, as this 
adds network overhead. Rather, the window size applies only to 



reliable packets. Unreliable packets have a probability of being 
dropped, which increases as the window size grows. Therefore, 
the Enet policy is to drop unreliable packets in order to make 
room to send reliable ones, and to make use of the reliable 
transmissions for adapting the flow control rather than using 
bandwidth to send acknowledgements for unreliable information. 
Raknet’s flow control policy works similarly to Enet’s, though it 
does not use probability to determine whether to send unreliable 
messages. Instead, it suppresses all unreliable messages when the 
window is full and sends them otherwise. 

4.1.3 Aggregation 
Messages sent by games are often small, and so multiple 
messages can often be aggregated together into a single packet. 
This saves bandwidth consumed by packet headers, as well as 
reduces the resources required to process packets along the way. 
Aggregation works by combining messages that are queued to be 
sent until the maximum packet size is reached, all of the messages 
in the queue are sent, or the timer for sending a packet is reached. 
The aggregation approaches described below appear in all 
libraries except Enet, which does not support aggregation. 
Send queues: Outgoing messages are written to an outgoing 
message queue, and packets are then generated based on the 
queue contents. The packet is filled with messages up to the 
maximum transfer unit (MTU) size and sent, potentially 
containing many aggregated messages. 
Frames: Object replication works by creating replicated objects 
that extend a generic replicated type offered by the networking 
library. Updates to the replicated objects occur in frames, which 
combine updates for the shared data structure to send over the 
network. In TNL, Raknet, and Zoidcom, the application 
programmer can specify a maximum (and in Zoidcom’s case, a 
minimum as well) update rate for each replicated object. The 
frames consist of a subset of the replicated objects that is 
determined by the frequency preferences. The generated frames 
are written to the send buffer and aggregated with other outgoing 
RPC traffic. In Zig, object replication is less automated, requiring 
the application programmer to define exactly what is included in 
each frame. Only one frame can be defined per application and so 
the entire set of replicated object updates has to be aggregated by 
the application programmer into a single frame. This approach 
requires more effort from the application developer, but it also is 
more flexible than an automated approach. 

4.1.4 Priority 
Sometimes, the number of messages in the outgoing message 
queue exceeds what can be aggregated into a packet. This 
happens when there are large, dense bursts of messages, when the 
data rate is low due to limited bandwidth, and it is particularly 
common when there are many users in the system. One 
mechanism for degrading gracefully is to mark messages with a 
priority that indicates the order in which they should be selected 
for inclusion in packets. This way, the most latency-sensitive 
messages are sent promptly and less latency-sensitive messages 
are sent later or dropped from the send queue if their information 
becomes stale. By using priority queues, bandwidth can be limited 
while allowing the game to function as best as it possibly can. We 
observed several different mechanisms for supporting priority. 
Numerically assigned and automated: TNL and Zoidcom allow 
the programmer to set a numeric priority for each replicated 

object. The sending mechanism then sends individual object 
updates from highest to lowest priority until the bandwidth 
available is used. Low priority unreliable messages that cannot be 
sent are dropped, and low priority reliable messages either wait to 
be sent or are updated with more recent information. 
Numerically assigned but manual: Raknet’s approach is to 
provide infrastructure to enable application programmers to 
handle their own priority scheduling. Raknet supports different 
priority levels for information, but does not dictate how the 
priorities are handled. Instead, Raknet provides several abstract 
methods that can optionally be implemented by the application 
programmer to define how the application handles the priorities. 
Reliable messages first: Enet uses a policy where reliable 
messages have priority over unreliable messages. The unreliable 
messages are dropped according to an adaptive probability. When 
bandwidth is sufficient, all unreliable messages are sent. 
However, when bandwidth becomes constrained, the probability 
of dropping unreliable messages increases adaptively until an 
equilibrium state is reached. 
RPCs or frames first: Zig allows the priority of RPCs to be set to 
one of two policies. The first policy forces RPCs to be sent out 
before any additional frames, even if a frame needs to be dropped 
in order to send the RPC. The second policy waits until the RPC 
can be aggregated with a game frame in the same packet. Frames 
do not have priorities. 
Deliver at all costs: TNL also offers a “quickest delivery” policy, 
which assigns priority higher than any other message and keeps 
sending this message until it is known to have arrived. This policy 
is described further in section 4.3.2 below. 

4.1.5 Bandwidth conservation summary 
The techniques reported in this section are all aimed at coping 
with limited bandwidth. In particular, games minimize bandwidth 
with encoding and compression techniques, they maximize 
throughput without exceeding bandwidth limits using adaptive 
rate and flow control, they aggregate messages into packets to 
reduce transport overhead, and they use priority scheduling to 
help to degrade gracefully when bandwidth becomes constrained. 
These are all techniques that could benefit real-time groupware. 

4.2 Low-cost reliability and ordering 
Games need to send traffic with variable levels of reliability and 
ordering. Since games are real-time applications, they cannot 
simply send all information as reliable ordered since this level of 
service results in poor performance, as described in section two 
above. Instead, games make use of two main techniques to 
achieve reliability - they offer several different combinations of 
ordering and reliable delivery, and they manage it at a message 
level rather than at a packet level. 

4.2.1 Several levels of reliability 
Some game messages require reliable delivery, while some 
messages do not, and some information needs to arrive in order, 
while other information does not, and there are various 
combinations of each. All of the game libraries we examined offer 
several different QoS options for delivery and ordering. A total of 
five distinct reliability and ordering policies appeared in the 
networking libraries. For implementation details, see Raknet [R], 
as it is the only library that offers all five policies. 



Reliable ordered protocols are implemented over UDP by each of 
the network libraries. The reliable UDP implementations follow 
the design of TCP, but have some key differences as well. For 
example, all reliable messages are replied to with 
acknowledgements, similar to TCP. However, they use more 
responsive flow control algorithms that share logic with unreliable 
traffic, and in some cases, they use more elaborate ordering 
algorithms that are better suited to the needs of games. Reliable 
unordered messages are guaranteed to arrive, but are processed in 
the order that they are received. This is a useful policy for sending 
discrete events that are independent of other messages, such as a 
spaceship being hit by a bullet. The reliable sequenced policy 
drops all late arriving reliable information at the receiver, and also 
drops packets from the resend queue at the sender when a later 
packet is acknowledged. Unreliable unordered messages are 
never resent, and the unordered designation simply means that 
messages are processed in the order in which they arrive. 
Unreliable sequenced messages are not resent, and out-of-order 
arrivals are discarded at the receiver rather than processed.  
The most interesting of these policies is reliable sequenced. Using 
this policy, only the most recent update to a stream of reliable 
sequence messages is reliable. The advantage of this policy is that 
it offers some of the latency and bandwidth advantages of 
unreliable traffic, but ensures that the most recent updates in a 
stream arrive. This is a very useful policy for the often bursty 
streams in games and groupware since this traffic benefits from 
making the most recent update reliable, but previous updates are 
unimportant and stale. For example, this policy is well-suited to 
telepointer or avatar movement messages. 

4.2.2 Message-level reliability 
Most real-time distributed media provides reliability support 
using a packet protocol. This is fine when most messages have the 
same reliability requirements (e.g. VoIP) or when messages are 
large (e.g. file transfers). However, when messages are small, 
frequent, and have diverse reliability requirements, it is better to 
implement reliability at a message level than at a packet level. 
All libraries but TNL implement a packet level protocol. This 
requires all messages in the packet to be treated equally, and 
performance suffers as a result. As a simple example, consider a 
packet from a first person shooter game that contains movement 
message that uses an unreliable sequenced delivery policy and a 
weapon fire message that uses a reliable unordered delivery 
policy. Since one of the messages requires reliable delivery, 
packet-level reliability would require the system to send this 
packet using a reliable protocol. If the packet was lost, the packet-
level protocol would resend the entire packet rather than just the 
weapon fire message. This example is shown in Figure 4a. 
TNL implements message-level reliability, which enables a single 
packet to carry many messages with various levels of reliability. 
This is implemented by adding a lightweight reliability header to 
every message, and there is no reliability portion in the packet 
header. As an example, consider the same scenario as above 
where a packet is lost containing an unreliable movement 
message and a reliable ordered weapon fire message. The 
movement message could simply be dropped since delivery is not 
required, and the weapon fire message could be aggregated into 
the next packet to be sent, which eliminates the need to resend the 
lost packet. This can produce a tremendous efficiency gain in low 

bandwidth lossy conditions when network performance becomes 
critical. This is shown in Figure 4b. 

m1                   m2

m3(U)                 m4(R)

m3(U)                 m4(R)

(Dropped)

m5                        

 
Figure 4a: Using packet-level reliability, when the second packet 
containing messages 3 (unreliable) and 4 (reliable) is dropped, the 
entire packet needs to be retransmitted. Here, message 3 is resent 
even though it is not reliable message, which is inefficient. 

m3(U)                 m4(R)

m4(R) 

(Dropped)

m5     

m1                    m2  
Figure 4b: Message-level reliability allows message 3 to be 
dropped, and aggregates message 4 into the next outgoing packet, 
which is more efficient than sending the entire dropped packet. 

4.3 Minimizing latency 
The priority policies, flow and rate control techniques, and 
efficient encodings described above partially address latency 
problems. However, three additional causes of latency remain. 
The most critical latency problem occurs when ordered messages 
are lost, which causes other ordered messages to be blocked at the 
receiver while waiting for the missing message to arrive. A 
second source of latency occurs when there is not enough 
bandwidth and the outgoing message queue gets backed up. Last, 
sometimes time-critical messages need to be sent, and they have 
to wait in the outgoing queue or get lost the first time and have to 
wait further to be resent. Games have techniques for reducing 
latency in all three of these scenarios. 

4.3.1 Multiple ordered streams 
A significant source of latency comes from having to wait for 
reliable ordered messages that are lost or late to arrive at the 
receiver. When this happens, all subsequent ordered messages are 
blocked at the receiver while waiting for the lost message to 
arrive. Games partially address this problem by offering several 
unordered policy options, but still, some information must be 
ordered and the latency problem can still be significant. 
Because of the many message types sent in games and their 
diverse QoS requirements, it is common to have independently 
ordered messages. For example, ordered chat messages and 
ordered firing messages do not need to be ordered together as the 
order of firing and chat are independent. In this case, a lost chat 
message should not block firing messages. 
To avoid this unnecessary latency, Raknet provides up to 32 
independently ordered streams. Each stream is ordered relative 
only to messages on the same stream. Streams are identified using 
a channel number, which is specified as a parameter of each 
message sent by the sender. The channel number is encoded in a 
message-level header, so although reliability is controlled at a 
packet level in Raknet, ordering is at a message level. This allows 
messages that are ordered on separate streams to be aggregated 
together in a single packet. 



4.3.2 The current state data policy 
When there is not enough bandwidth, the outgoing send queue 
can become backed up. Additionally, reliable messages can 
remain in a resend queue until an acknowledgement is received. 
While queued, updates to these messages can become available 
and the queued information can become stale.  
The reliable sequenced policy used in Raknet partially addresses 
the problem of staleness in the reliable queue. Rather than 
resending reliable data that is no longer current, it drops the 
message from the resend queue when it receives an 
acknowledgement that a more recent update arrived at the 
receiver. However, this policy does not remove stale information 
when acknowledgements are not received or when the queue is 
backed up due to low bandwidth. 
To optimize for this situation, TNL adds a QoS level that they call 
“current state data”, which ensures that the most recent update to 
information marked with this QoS flag is sent. Before information 
is sent, a check is performed to ensure that there is no updated 
value available. If there is an updated value, the queued 
information is dropped and replaced with the update. This 
approach ensures that only the most recent information is ever 
sent. However, it is important to note that the source of the 
queued information must be known, so this approach lends itself 
better to data replication tasks than it does to sending RPCs. 

4.3.3 The quickest delivery policy 
Some information sent in games needs to arrive before all other 
information, either because it is highly latency-sensitive (e.g. a hit 
in a first person shooter game), or because subsequent messages 
have a dependency on a piece of information (e.g. a new string 
table entry). Although it is possible to achieve this using logic at 
the application level, it can make the game programmer’s job 
much easier to implement this at the network library level. 
To ensure that highly latency-sensitive information arrives at its 
destination as quickly as possible, TNL includes a policy that it 
calls “quickest delivery”. It works by including a message in 
every outgoing packet until it receives an acknowledgement that 
confirms its arrival at its destination. This guarantees the soonest 
possible delivery of a message since in the event of a packet loss 
or a delayed packet, the message is delivered with the next packet 
that is not lost or delayed instead of having to wait to decide to 
resend due to loss and without the need to wait for a late packet. 
This policy trades off bandwidth efficiency for minimized latency 
since it sends information redundantly, but the penalty is usually 
not a large one since game messages are small. However, due to 
this inefficiency, the programmer must take care to not overuse 
this policy. An example of the quickest delivery policy is shown 
in Figure 5. 
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(Dropped)

m7                     m8

 
Figure 5: The quickest delivery policy sends a message with 
every packet until it is acknowledged, guaranteeing that it arrives 
with the next packet the receiver receives. 

5. SHARED WHITEBOARD SCENARIO 
The techniques used in games are directly applicable to real-time 
groupware. As an example, we consider applying the techniques 
described above to a shared whiteboard application. This section 
describes steps to applying the types of techniques and presents a 
brief analysis of the result of applying them. 

5.1 Shared whiteboard network design 
Whiteboard message types: We assume that the shared whiteboard 
uses eight message types: chat, telepointer, tool selection, grab, 
drag, drop, annotation, and session information. 
QoS for each message: Chat, annotation, and session information 
messages should all be reliable and ordered, but do not require 
synchronization with any other information streams, so they are 
all sent over their own independent channels. These message 
types are not very latency sensitive, and so priority can be set 
low, as they can be sent later in favor of more latency sensitive 
information. Telepointers are highly latency sensitive, and do not 
require reliable or ordered delivery, as late information is not 
displayed in this design. Since telepointers are not dependent on 
any other messages, they are sent along their own ordering 
channel. The message types related to drawing operations need to 
be ordered with one another, as the effect at the receiver will be 
incorrect if they are processed out of order. The most latency 
sensitive drawing operations are grab and drop, as these operation 
lock the object for modification, and so a quickest delivery (QD) 
policy is applied to these message types. Drag operations, like 
telepointers, do not need to be reliable, although they do need to 
be ordered with the other drawing operations, so drag methods are 
given a sequenced ordering policy and high priority. Tool 
selections are required to be ordered within the drawing channel, 
and their priority should be high so that the user’s avatar can 
promptly reflect tool changes. Annotations are designed to update 
in real-time, so individual messages are individual characters. In 
order to preserve the metaphor of typing, they are given a medium 
priority so that latency is reduced. These QoS requirements are 
shown in table 1 below. 

 Reliable Ordering Channel Priority 
Chat Yes Ordered 0 Low 
Tele No Sequenced 1 High 
Tool Yes Ordered 2 High 
Grab Yes Ordered 2 QD 
Drag No Sequenced 2 High 
Drop Yes Ordered 2 QD 

Annotation Yes Yes 3 Medium 
Session Yes Yes 4 Low 

Table 1: QoS requirements for individual message types in a 
shared whiteboard. 
Efficient message encoding: Chat, session information, tool 
selection, grab, and drop are all discrete events and are therefore 
best modeled as RPCs. For each of these, we register an RPC with 
bit lengths for parameters specified where appropriate. For 
example, [x.y] coordinates should be encoded such that their 
limits do not exceed the maximum workspace dimensions, tool 
selections should be encoded so that the tool parameter does not 
exceed the total number of tools available to the system, etc. 
Telepointers and drag operations are modeled as replicated data, 
and the parameters are encoded using minimum bit lengths. 
String compression: The only strings sent by the system are those 
from chat messages and from pasting text strings to annotations. It 



is reasonable to assume that the names of users will be frequently 
typed in chat, and so usernames are added to the string table when 
users join a session. Other strings will be compressed using 
adaptive Huffman encoding, where the characters frequencies are 
tracked and the Huffman tree is rebuilt and sent out periodically. 
Adaptive rates: Telepointers and drag operations are streaming 
types and are assigned a minimum update frequency of 0 updates 
per second and a maximum frequency of 30 updates per second. 
The rates will adapt according to the state of the network, 
maintaining the maximum rate when network resources are 
plentiful and decreasing when resources become constrained. 
Since telepointer updates and drag messages will comprise most 
of the messages sent by the system, this adaptive frequency range 
is all that is necessary to allow the system to degrade gracefully 
when network resources are constrained. 
No stale information: Telepointer and drag operations are given 
TNL’s current state data policy, which ensures that only the most 
up-to-date values are sent. This is possible because the telepointer 
and drag messages are modeled as replicated data rather than as 
RPCs. This policy will both reduce latency and traffic. 

5.2 Networking design implications 
Less bandwidth usage: Since discrete operations are uncommon 
compared to telepointers, and drag operations and telepointers use 
the same amount of bandwidth, the maximum bandwidth for a 
shared whiteboard can be reasonably approximated by 
considering only that used by telepointers. Using the network 
design described above, the bandwidth for sending telepointers 
would be a tiny fraction of what the event-driven TCP model 
used. Under ideal network conditions, the above approach would 
consume just over 11Kbps per connected client (UDP/IP header: 
28 bytes; custom packet protocol: 12 bytes; message protocol: 3 
bytes; telepointer payload: 5 bytes; send rate: 30 messages per 
second, 1 per packet). This is 1/3 less bandwidth than the version 
GroupKit uses described in section 2 above.  
However, when resources become constrained, the flow controller 
will begin to aggregate telepointers, which results in a substantial 
bandwidth saving. For example, aggregating 3 telepointers into 
each packet would result in a bandwidth usage of 5Kbps per client 
due to the reduction in packet headers that need to be sent. 
Additionally, as bandwidth becomes so constrained that it can no 
longer support 30 updates per second, the telepointer rate can 
drop, reducing the required bandwidth to suit the conditions. 
More timely information: Telepointer and drag operations will 
remain highly responsive, even if network conditions are lossy. 
The high priority ensures that they will be sent out whenever 
there is enough bandwidth to support them before other 
operations that are more latency tolerant. In the event of packet 
loss, telepointers will not be blocked while waiting for other, 
reliable information to be sent, and the most recent telepointer 
positions will be used. In the event of a burst loss or temporary 
network congestion, the most recent telepointer positions will be 
sent as soon as the traffic can get through. 
Grab and drop messages will always be sent ahead of any other 
types of information, so users will always know as soon as 
possible when another user has picked up or let go of an object in 
the workspace. This will enable faster turn-taking and fewer 
conflicts over objects. By sequencing and ordering all drawing 

operations, the operations will appear to work similarly to how 
they work on the sender’s machine, regardless of network effects. 
Degrades gracefully: When bandwidth is constrained, the network 
library will send packets less frequently and aggregate more 
messages into each packet. This adds a small amount of latency, 
but maintains smoothness. In extremely constrained conditions, 
the send rate of telepointer and drag messages will be reduced, 
which will reduce the smoothness and/or accuracy of the streams, 
but the application will continue to function, as these messages 
are traded to ensure that the more critical messages get through. 
Better overall usability: The user experienced will be greatly 
improved over an event-driven TCP model. Under ideal network 
conditions, this network design will perform the same as TCP-
based implementations. However, as network conditions become 
worse, this networking design will continue to support a highly 
usable shared whiteboard, promising low latency, up-to-date 
telepointer and drag positions, and sustainability down to 
comparatively very low amounts of bandwidth. 

6. DISCUSSION 
This study of networking techniques used in multiplayer games 
produced two important results: it identified a set of networking 
techniques that are known to work over the Internet, and it 
identified some ideas for future research. 

6.1 Lessons for practitioners 
This paper presents a large number of networking techniques that 
are ready to use for building real-time distributed groupware. The 
techniques are presented at a high level rather than in detail, but 
the details are all found in the open source libraries for anyone 
needing more information. These techniques are particularly 
useful because they are known to be effective from years of 
experience in games and the game networking libraries serve as 
high quality examples of how to build these techniques. The other 
contribution to practitioners is that the principles that drive these 
techniques has led to a set of networking guidelines that are 
valuable to developers: limit bandwidth use, use appropriate 
reliability and ordering policies, and degrade gracefully. 
Additionally, by examining game networking libraries and 
describing their techniques, this paper shows that these libraries 
are candidates for use for building groupware applications. 

6.1.1 Limit bandwidth use 
Games use a variety of techniques for reducing the required 
bandwidth. The reason for this is that minimizing traffic is critical 
to performance. Some of the important bandwidth minimization 
principles that game networking libraries use are: 
Enable hand-tuning: Make it easy for application programmers to 
efficiently encode their messages. 
Avoid sending strings: Send primitives as minimum bit-length 
primitives, encode RPCs numerically, and use tables to encode 
strings as primitives. Avoid sending strings whenever possible. 
Aggregate messages: When bandwidth is insufficient to send 
messages as they are generated, delay them slightly so that 
several can be aggregated into each packet. The small amount of 
added latency is a reasonable tradeoff for the increased efficiency. 
Compress strings: It is useful to always attempt to compress 
strings using Huffman encoding or other lossless techniques. If 
the result is smaller, send it, and if not, send the original. 



Imply parameters: Known bit-lengths of headers, ids, and values 
can imply parameter names. Never send these names, only values. 
Avoid sending stale information: Take care to ensure that every 
message that is sent is useful to the receiver, and replace outgoing 
information with current values if updates are available. 

6.1.2 Degrade gracefully 
Applications should be prepared to cope adaptively with lower 
levels of network service. Some principles that appear in game 
networking libraries are: 
Use adaptive flow control: Flow control using an adaptive 
window size is an effective technique for delivering timely 
information when bandwidth is sufficient and for driving 
aggregation, priority scheduling, and rate control policies when 
bandwidth is constrained. 
Determine frequency ranges: By using minimum and maximum 
update frequencies, the application can degrade its traffic flows 
appropriately to cope with limited network resources. 
Set priorities: Not all messages have the same level of 
importance, and close attention to assigning priority to messages 
is important when bandwidth is constrained. 
Provide information to higher layers: Applications need to know 
when network conditions are poor, as there is a great deal that an 
application can also do to adapt to these conditions at runtime. 

6.1.3 Use appropriate reliability and ordering  
A major source of latency is due to blocking incoming messages 
that are out of order. This scenario needs to be avoided as often as 
possible using the following principles: 
Do not order unnecessarily: Whenever possible, avoid ordering 
altogether. Just because a message needs to be delivered reliably 
does not imply that it has to be ordered as well. 
Order independently: Games and groupware send a wide variety 
of different messages types, and ordered messages can be grouped 
into independently ordered streams. 
Use sequenced policies: Sequenced policies can be particularly 
appropriate for interactive applications because they keep 
messages ordered, avoid blocking, and do not send or resend stale 
information. Unreliable traffic can be cheaply ordered with 
reliable information using an unreliable sequenced policy. 
Likewise, reliable sequenced policies are also useful because they 
do not block unnecessarily. 

6.1.4 Use game networking libraries 
The reason that network gaming libraries have become common 
is that it is not trivial to build good network code for games, and 
the same holds true for groupware. The poor performance seen in 
academic groupware applications is mostly the result of not 
devoting particular attention to network designs and optimizations 
rather than not having the capability to do so. An effective 
approach to building groupware that performs better over the 
Internet without the cumbersome task of writing efficient 
networking code is to start using existing game networking 
libraries. Games and groupware have many of the same 
requirements, and game network libraries meet the needs of 
groupware applications more closely than any other network 
implementations that are available. Additionally, they are robust 
and well-tested through real world use, and are likely to be more 

efficient to integrate and use than it is to develop a less efficient, 
less robust approach from scratch. 
Eventually, groupware may have its own networking libraries that 
are better-suited to the needs of groupware. Until then, game 
networking libraries represent the best low-effort option for 
developers who want their applications to be used on the Internet. 

6.2 Areas for future work 
6.2.1 Improvements to techniques 
Many of the techniques presented here offer opportunities for 
improvements. In particular, design aspects of some techniques 
vary among libraries, showing that determining the best method is 
not trivial and more work is required. Also, some of the 
techniques require considerable effort from the application 
programmer, and this effort can likely be reduced by automating 
some of these functions. Areas for future work include: 
Automating encoding: Game libraries have made it easier to hand-
tailor message encodings, but hand-tailoring still demands 
considerable attention from the application programmer. New 
methods that use the same principles and can approach the same 
level of efficiency but reduce the load on developers are needed. 
The techniques used in games can guide the development of 
easier to use techniques. Some ideas include adaptively 
determining minimum bit-length encodings for primitives, 
dynamically building string tables based on frequencies, and 
simpler programming interfaces for encoding shared information. 
Better string compression: Strings in games and groupware are 
short, frequent, and most of the redundancy is among strings in 
separate messages rather than within individual strings. However, 
most lossless techniques for compressing strings assume that the 
strings are long and that the redundancy is contained within the 
string. Raknet’s approach of dynamically generating new 
Huffman trees based on observed runtime character frequencies is 
a good example of a compression technique tailored to suit the 
characteristics of groupware, but there are certainly more 
opportunities available for more efficiently compressing strings. 
Adaptive window sizes for groupware: Game networking libraries 
use a variety of techniques for adaptively controlling window 
sizes. It is unclear which of these techniques is best, and it seems 
to depend on the characteristics of the groupware traffic. Further 
work is needed to determine how to most effectively control 
adaptive window sizes in groupware, paying close attention to the 
bursty nature of interactive traffic, variable traffic patterns among 
applications, and diverse requirements for reliability among 
message types. In particular, how to best address the problem of 
controlling window size in unreliable traffic should be addressed. 
Better aggregation policies: Aggregation in game networking 
libraries is driven by the window size only, but since aggregation 
adds latency, it should also be a function of the latency 
requirements of the information being sent. For example, 
aggregation should be avoided when low latency is required, and 
aggregation should be enabled when the added latency does not 
impact usability. QoS requirements and the network window size 
should both be considered by an effective aggregation policy. 
Specialized delivery policies: TNL’s quickest delivery and 
Raknet’s sequenced ordering are examples of specialized delivery 
policies that are well-suited to the needs of games and groupware. 
There are undoubtedly more scenarios that are unique to 



groupware traffic that could benefit from having policies tailored 
for the scenario. At a minimum, policies that address quality of 
experience issues beyond timeliness such as smoothness and 
accuracy are required. Additionally, policies should address the 
more complex aspects of collaboration such as degree of interest, 
focus and nimbus, and closely-coupled tasks would be beneficial. 

6.2.2 Lessons for developing new techniques 
Some of the techniques used in games take advantage of the 
characteristics of groupware traffic. These same characteristics 
can be applied to drive new groupware networking techniques. 
The characteristics of groupware traffic that can lead to new 
techniques are: 
Streaming awareness information characteristics: Real-time 
groupware traffic consists mostly of streaming awareness 
information. This traffic is often bursty, messages are small, and 
messages have high frequencies. Game networking libraries have 
made use of these characteristics to enhance their aggregation 
policies, compression and encoding techniques, and scheduling 
techniques. Making use of these same characteristics can drive 
future techniques and optimizations to existing techniques. 
Messages have diverse QoS requirements: Several of the 
techniques used in games are the direct result of observing the 
QoS requirements of game message types. The diverse QoS 
requirements of groupware can lead to further efficiency gains as 
the requirements are better understood and as policies and 
techniques are developed to take advantage of the requirements.  

7. RELATED WORK 
There is an abundance of work from various domains that is 
relevant to the techniques presented here. Many of the techniques 
used in games are familiar, although they have been tailored 
specifically to the needs of games. 
A recent survey [5] of application layer networking techniques for 
groupware presents the most comprehensive collection of 
techniques from both groupware and from related domains such 
as multimedia, IP telephony, and distributed systems. Although 
some related techniques are mentioned, none of the techniques in 
the survey are the same as any of the techniques presented here.  
Smed et al has surveyed techniques used in network games 
specifically [16]. This report reviewed published work from 
military simulations, networked virtual environments, and 
networked games. The survey describes aggregation and 
compression as useful techniques, but the specifics of the 
techniques are different from those we observed in games. 

8. CONCLUSION 
This paper presents the first analysis of game networking based 
on source code and documentation from real game networking 
libraries. The techniques and principles presented here are the 
result of significant real-world experience from the gaming 
industry in delivering a quality experience to users over the 
Internet. These techniques and principles are directly applicable 
to groupware, and applying them will drastically improve the 
performance of groupware when used under constrained network 
conditions. This work also has produced new directions for 
groupware networking research that are based on the current 
state-of-the-art in game networking. 

Groupware aims to enable collaboration among people who are 
located all over the world. To do this, we must find ways of 
coping with the limitations of today’s Internet. Network games 
have been successfully providing rich, real-time, interactive 
experiences to groups of people located all over the world for 
over a decade. By bringing the techniques that games use to 
groupware, we can further promote collaboration among 
individuals everywhere. 
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