
Beyond the LAN: Techniques from Networked Games
for Improving Groupware Performance

Jeff Dyck, Carl Gutwin, and David Pinelle
University of Saskatchewan

{jeff.dyck, carl.gutwin, david.pinelle} @usask.ca
ABSTRACT

The goal of real-time distributed groupware is to support
synchronous work at a distance, but if these systems are to
succeed, they must find ways to deal with real-world network
issues more effectively. One rich area that can provide network
techniques for groupware is network gaming: network games
have more than a decade of experience building collaborative
applications that perform well on the Internet. The techniques
used by games have not traditionally been made public, but
several game networking libraries have recently been released as
open source, providing the opportunity to learn how games have
achieved their network performance. We examined five game
libraries to find networking techniques that could benefit
groupware; this paper presents the most valuable concepts that we
found. The techniques deal with limited bandwidth, reliability,
and latency, and include both known techniques and principles
that have not been seen before in the groupware community. By
adopting these techniques, real-time groupware can dramatically
improve network performance on the real-world Internet.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces—Computer-supported cooperative work.

General Terms
Performance, Design, Reliability.

Keywords
Networking, Quality of Service, Network Games, CSCW,
Groupware, TNL, Raknet, Zoidcom, Enet, Zig.

1. INTRODUCTION
The goal of real-time distributed groupware is to support
synchronous shared work at a distance. In order to achieve this
goal, groupware must perform well on real-world wide-area
networks like the Internet; but although many systems succeed in
the research lab, network performance becomes a major problem
when they move beyond the LAN and into the real world. On a
local area network, it is easy for any networking infrastructure to
perform well, since bandwidth is plentiful and packet loss is rare.
On real world networks, however, bandwidth is limited and
packet loss is common, and current approaches to networking for
CSCW applications quickly run into severe difficulty with
network delay. Delays cause problems for visual communication,
coordination of actions, and anticipation, and generally reduce the
richness and quality of real-time collaboration [10]. If real-time
groupware is to succeed, it must find ways to reduce delay, and
the most obvious place to start is in the infrastructure that
groupware systems use to communicate over the network.

There are several disciplines that could be used as a source of
ideas for improving groupware networking: for example, there is
a great deal of research in video distribution, voice over IP, and
distributed simulation. Although this research is valuable (see [5]
for a survey), the data used in these domains often has very
different characteristics and different quality of service (QoS)
requirements than the messages used in groupware systems, and
the networking techniques are as a result less applicable to
groupware. There is, however, one area of previous work that has
much in common with real-time groupware – in fact, that is a type
of real-time groupware – and already has a proven record in
efficient networking. That area is networked multiplayer games.

The network gaming industry has more than a decade of
experience in delivering a high-quality multiplayer experience
over the Internet, with millions of users and thousands of game
titles. Games also have more in common with groupware than
other types of distributed systems: they send short, frequent
messages that are generated from human interaction with the
system, and they send several different types of messages with
different requirements for reliability and latency. A reasonable
starting point for improving groupware networking, therefore, is
to determine how games send information, and evaluate the
applicability of these techniques for groupware. Learning how
games deal with networking, however, is difficult since game
companies do not generally publicize their techniques, since
source code is usually proprietary, and since capturing network
packets violates license agreements. This has limited what can be
discovered from games, and previous surveys (e.g., [16]) have
primarily been based on academic research papers; as a result,
many of the novel aspects of game networking have remained
undocumented in academic literature.

Recently, however, the source code for several game networking
libraries has been released, providing an opportunity to determine
exactly how games have achieved their network performance.
These libraries provide a more comprehensive look at networking
than do individual games, since the libraries bring together more
techniques than are used in any single game, and since the
techniques have been generalized to the point that they can be
used for a variety of games in several genres. We inspected five
different game networking libraries – TNL, Raknet, Zoidcom,
Enet, and Zig – to find out how they achieve good network
performance, and we discovered several networking techniques
and principles that have not been considered before by groupware
researchers. This paper presents these techniques and principles,
and shows how they can be useful to other types of real-time
distributed groupware. The techniques address the three critical
issues that both games and groupware must deal with on the
Internet, limited bandwidth, reliability, and latency, and are
organized according to the problems they solve.

There are two contributions of our work. First, we have brought
together a set of networking principles and techniques that have
been extensively tested by the gaming industry. Even though
some of the techniques in the list have been seen before in other
network research, it is valuable to know which principles have
stood the test of time and been proven valuable enough to retain a
place in the networking libraries. Second, some of the variations
of these techniques have not been seen before by the research
community, and we describe these techniques in greater detail.
These new variations of techniques are the result of two
fundamental characteristics of both groupware and games – that
messages are small, and that messages have diverse QoS
requirements – characteristics that can lead to further research on
techniques tailored for the needs of real-time distributed systems.

2. NETWORKING IN ACADEMIC
GROUPWARE
Academic groupware that sends real-time awareness information
is restricted to the LAN because of its approach to networking.
Not all academic groupware is built in the way that this section
describes, but it is the most common approach to networking in
academic toolkits and applications that we have observed.
We refer to this method of networking as event-driven TCP.
Using this method, the application’s event model triggers events
that result in information that needs to be sent over the network.
This information is immediately packaged into a TCP packet and
sent. Therefore, packet rate is governed by the application’s event
model. This works fine when events are rare and guaranteed
delivery is required, like in a chat application, because the amount
of information sent over the network is small and network
performance does not affect usability. However, for interaction
techniques that require updates to be sent frequently, such as
telepointers, event-driven TCP does not work well when
groupware applications are used over the Internet.
For example, GroupKit [9] uses event-driven TCP for sending its
messages. Telepointer messages are generated and sent on mouse
interrupts with one message in each packet, which typically
produces packet rates that are between 30 and 60 telepointer
updates per second. Each of these packets is sent via TCP/IP,
which has a header size of 40 bytes, and each of the text-based
telepointer messages has a size of approximately 50 bytes. This
produces an upload data rate from moving a telepointer across the
screen of around 32Kbps for every user that the messages need to
be sent to. In a 4-user shared whiteboard session with a peer-to-
peer unicast network architecture, this results in an upload
bandwidth requirement of 128Kbps for each user, which is more
than many common home Internet packages currently provide.
When bandwidth is not sufficient to carry the telepointer
messages, messages are queued in the sender’s outgoing TCP
buffer, and the motion at the receiver lags behind and slowly
catches up between mouse movements.
Even for those users with sufficient bandwidth, performance may
still be poor due to the reliability and bandwidth throttling
mechanisms used by TCP. Using TCP, when packets are lost or
delivered out of order, incoming packets are blocked at the
receiver and no information is processed until messages are
received in order. TCP resends lost messages whether they are
still useful or not, and the receiver waits for these late messages
before unsynchronized information can be processed. For

example, in a shared whiteboard application, a lost telepointer
update message means that all messages are blocked, including
non-dependent ones like tool selections and chat messages, until
the telepointer message arrives. Upon arrival, this telepointer
update is late and does not represent the location of the sender as
well as other blocked information, and other messages are all
delayed while waiting for this late telepointer position. The result
is that upon arrival, the ordered burst of messages is processed
together faster than the display can display the result, producing
an appearance of the telepointer jumping across the screen in an
unnatural way. This behaviour has a negative impact on usability,
making actions hard to coordinate and gestures hard to recognize,
as well as causing telepointer motion to break down [10].
Although GroupKit is an older groupware toolkit, it still serves as
a representative example of how many academic groupware
toolkits can work. For example, based on documentation and on
packet traces we performed on sample applications, Disciple [12],
Java Shared Data Toolkit [3], Collabrary [2], MAUI [11],
CoWord and CoPowerPoint [17], JAMM [1], Clock [8], and
Habanero [4] all handle networking in a similar fashion. Some of
these toolkits offer additional networking options (e.g. Java
Shared Data Toolkit supports the lightweight reliable multicast
protocol), however, the default is to use event-driven TCP.

3. OPEN SOURCE GAME LIBRARIES
The methodology used in this study was to examine open source
game networking libraries to find networking techniques that can
benefit groupware. We began by identifying all of the open
source game networking libraries that are mature, recommended
for use on game development web sites, and in use in existing
games. We thoroughly read through their documentation, reverse
engineered their designs, and inspected source code, noting any
networking techniques that are used. The main tool we used for
reverse engineering and source code inspection was Understand
for C++ [15]. This process produced a list of the networking
techniques used in each of the open source libraries. We then
categorized the networking techniques according to the problems
they solved and evaluated how effective they would be for
groupware based on how well they solved groupware’s latency,
jitter, and bandwidth problems. This produced a list of the most
important and useful techniques that appear in network games.
We then identified which of the techniques were novel to
groupware based on what had been published previously in the
groupware academic community. Last, we analyzed what led to
the development of these techniques.

3.1 Game networking libraries
The Torque Network Library (TNL) [7] is derived from the
network code used in the multiplayer games Starsiege: Tribes and
Tribes 2. Tribes is a first person shooter (FPS) game that supports
up to 32 users. Unlike most FPS games of its time, Tribes was
situated in an outdoor setting where many users could see each
other at once, and the traffic filtering technique based on visibility
that was used in indoor FPS games was not as effective, meaning
that Tribes had to send unprecedented amounts of information
over the 28.8 Kbps modems it was designed to work with. As a
result, much network optimization was needed to accommodate
its design. The Tribes network code was further evolved for its
sequel, Tribes 2, which included improvements based on the
lessons learned in Tribes. After Tribes 2 was completed, the

networking code was packaged by its developers into a general
purpose, stand-alone library called TNL, which was offered
commercially and has been used in many successful independent
and commercially developed games.
Raknet [13] is a commercially developed game networking library
that has been used in several commercial multiplayer game
releases since 2002. It is frequently recommended by game
developers on game development message boards, both for its
ease of use and high performance. In 2004, the source code was
released, and commercial licenses were offered for free.
Zoidcom [14] is a full-featured commercial game networking
library that first appeared as a beta release in 2004 and is still in
beta development as we write this paper. The full source code for
the library is not available, but the C header files are included and
it is well-documented, which reveal several performance-
enhancing techniques that are relevant to this study. No
commercial game releases that use Zoidcom are available yet, but
it has been used in several independent game projects.
Enet [6] was developed as part of an open source first person
shooter game called Cube, which was first released in 2002 and
has been an active project since then. The Enet library is offered
as a separate, stand-alone networking library and is freely
available for unlimited open source and commercial use. It offers
only low-level services, which include session management,
network monitoring, reliable UDP transport, and flow control.
Although it has fewer features than the other libraries presented
here, Enet’s design is well-considered and carefully tailored for
the needs of games for the features it supports.
Zig [18] first appeared as an open source project in 2002 and has
been an active project since then with regular releases. It is not
yet in popular use and it has comparably fewer performance-
enhancing features than the other game libraries in this study. It
has been included here because of the unique compression and
aggregation techniques it uses, which are described further below.

4. GAME NETWORKING TECHNIQUES
Game network libraries have been designed to minimize some of
the effects of the most critical network problems that affect
usability: limited bandwidth, packet loss, and latency. In this
section, we present the most important methods for solving these
three problems that we found in the game libraries.

4.1 Bandwidth conservation
Game libraries are designed both to minimize bandwidth usage
and to cope gracefully when bandwidth is constrained. The
bandwidth minimization techniques used in the game libraries fall
under four main categories: encoding and compression, rate and
flow control, aggregation, and priority scheduling.

4.1.1 Encoding and compression
The single most important technique for reducing bandwidth is to
use minimal representations for the traffic being sent. Game
networking libraries encourage this by making it easy for
application programmers to efficiently encode information, by
making use of dynamically built string lookup tables, and by
compressing strings automatically.
Minimum bit-length encodings: Raknet, Zoidcom, and Zig use a
similar approach to encoding primitives, where they enable game
programmers to easily encode their network traffic efficiently.

They provide a bit encoder that makes writing primitives to a bit
stream a single method call. This approach results in the
application programmers sending only the values as primitives to
the network – no parameter names are sent and primitives are
never sent inefficiently as strings. TNL improves the efficiency of
this process by allowing the application programmer to specify
the number of bits to use to encode each primitive. For example,
an integer with a maximum value of 5 can represented using 3 bits
in TNL, while the other libraries would write a full byte since a
byte is the smallest primitive they support. The TNL method can
achieve optimal bit-length representations, but requires the
application programmer to calculate the number of bits that
should be used to represent each value. An example of
compressing a payload for TNL is shown in Figure 1.
 bool b = true;
 U32 i = 5;
 float f = 0.123;
 stream->writeFlag(b);
 stream->writeFloat(f, 7);
 stream->writeInt(i, 3);

b=true i=5 f=0.12345

0 1 4 11

Figure 1: TNL includes methods for writing each primitive to a
bit stream, where the first parameter is the value and the second is
the number of bits to use to represent the value. The above code

would represent the int, float, and boolean as 11 bits total. The 7-
bit float value loses precision and is read as 0.118 at the receiver.

String lookup tables: In games, strings are the most costly data
type to send, as each character requires a full byte to encode.
Therefore, a mechanism for encoding strings that are sent
repeatedly as a numeric id can be an effective optimization.
However, to do this effectively, we must know which strings will
be sent by the application, and this has dependencies on the game,
runtime parameters such as usernames and user-configured chat
hotkeys, and tasks that are performed within the game.
TNL uses a string lookup table that is generated dynamically at
runtime. Applications add strings that are expected to be repeated
to the lookup table, they send the string table additions to the
other clients, and then they send these strings as a numeric id
from that point on. A string can be a single word or a phrase. This
dictionary-based approach is well-suited to games since they
often send the same strings repeatedly in a session. An example of
adding a string to the dictionary is shown in Figure 2.
 static StringTableEntry returnString(
 "%e0 returned the %e1 flag.");
Figure 2: String tables are used to encode commonly occurring
strings at runtime. In this example, %e0 and %e1 are both names
of players, which vary based on the application instance. Once
added to the string table, strings can be sent as numeric string IDs,
as shown in figure 3.
Registered remote procedure calls (RPCs): RPCs are a signal to
call a method remotely. The method signature and parameters for
the method must be sent over the network. An efficient encoding
for RPCs is to use an id for the method, which implied the
parameter structure, and followed by a minimum bit-length
representation for the parameter values.
In TNL, RPCs function in this way. The signatures for RPCs are
registered with other clients during runtime as a dictionary entry

with a unique numeric ID. The signature for an RPC includes the
procedure name as well as its parameter list as minimum bit-
length representations. When sending an RPC, the procedure is
encoded efficiently as an ID and a set of minimum bit-length
parameter values. An example is shown in Figure 3.
Lossless compression: Game libraries use several approaches to
applying lossless compression within individual messages,
strings, and packets. The techniques we observed vary greatly,
from per-string Huffman encodings to lossless compression
applied to entire packets. There seems to be no standard
compression method that all gaming libraries agree upon.
 DECLARE_RPC(hitShip,
 (StringTableEntry victim, U16 time));

rpc_id=12 victim=17 time=94752

0 8 16 24 32

Figure 3: A sample of encoding an RPC using an approach similar
to TNL’s. The RPC method’s id rpc_id is encoded as a 8-bit
numeric id, and parameters are encoded using minimum bit-
length representations. Here, the string victim is a numeric 8-bit id
for a string in the string lookup table, and the parameter time is a
16-bit representation of the system time.
TNL compresses strings that are not inserted into its string table
using Huffman coding. Since strings sent by games are often
short, Huffman coding can produce a less efficient representation
due to the amount of character repetition being small in short
strings. The TNL Huffman coder is aware of this, and although it
encodes all strings, it only sends the encoded version if it is
shorter than the non-encoded version, adding a 1-bit flag to the
beginning of the string payload to identify if it is compressed.
The Raknet String compressor functions similarly to TNL’s – it
applies Huffman coding on a per-string basis. One optimization in
Raknet is that it maintains frequency charts for the occurrences of
characters in Strings, and the Huffman tree can be rebuilt at
runtime and sent to other clients based on the current frequency
charts to ensure that the encoding fits the application. This is
useful since the character frequencies in strings sent by games
may vary based on the application type, runtime parameters, and
the task. Raknet’s encoding algorithm also combines dynamic
Huffman encoding with LZ-encoding, and so its approach is best
described as dynamic LZH compression.
Zig compresses entire packet payloads rather than individual
strings. This can be advantageous since there may be more
character pattern repetition in the full packet and efficiencies can
be greater than when compressing only single strings. The
compressor Zig uses is the Bzip2 library. Since Bzip2 can
produce a longer result than the original when there are few
repeating patterns, Zig only accepts the compressed value if it is
smaller than the original. Zig adds a further enhancement where
the programmer can specify the smallest packet payload to
compress, which skips the compression process on small packets
that are less likely to benefit from compression. Zig also keeps
track of compression ratios, which the programmer can use to
adjust the payload size threshold.

4.1.2 Rate and flow control
Exceeding bandwidth limits causes severe usability problems. To
prevent this from happening, game networking libraries make use
of three main techniques: bandwidth monitoring, static rate
control, and adaptive flow control.
Bandwidth monitoring: Different games may require different
methods for reacting to limited bandwidth, and in some cases, the
decision for how to react is better left to the application
programmer. To enable the application programmer to more
easily react to changes, all networking libraries include methods
for monitoring the amount of bandwidth used. Information
available includes the current amount of incoming and outgoing
bandwidth available, based on what has been sent over the past
second, ping times, loss rates, packet window sizes, and outgoing
queue sizes. No two libraries provide the exact same information,
but each provides sufficient network information to enable the
programmer to make well-informed adaptive decisions. TNL
further simplifies the task of adapting to the network by offering
virtual methods specifically for reacting to network resources that
the programmer can override with their own adaptive logic.
Network rate control: Sometimes, game programmers know what
minimum send rates are acceptable for their games. TNL allows
the programmer to apply a rate control policy that maintains
specified minimum and maximum send and receive rates. The
fixed policy uses a credit system where not sending information
earns the sender up to one second worth of send rate credit. The
credit can then be used when there is a burst of information to be
sent at once. The TNL default is to use this fixed policy with a 96
ms delay between packets (~10 packets/second).
Object rate control: TNL, Raknet, Zig, and Zoidcom support
object replication, and the rate control technique used for objects
is to let the application programmer specify a maximum (and
minimum with Zoidcom) update rate for each replicated object.
The update rate adaptively changes according to the ranges
specified for each replicated object and the network conditions.
Adaptive flow control: One method for not exceeding the amount
of available bandwidth is to monitor and adapt to the amount of
packets currently in the network, called the window size. This
requires acknowledgements to be sent so that the sender knows
that a packet is out of the window. This works well for reliable
information since the acknowledgements are being sent anyway.
However, games send much of their traffic unreliably, so they
have to use alternate mechanisms for controlling flow since there
are no acknowledgements sent.
TNL’s adaptive flow control policy uses an adaptive window size
to control its send rate. When packets are received, it increases its
window size up to a preconfigured maximum, and when packets
are lost, the send window is decreased. The send timer then
checks that there is room in the send window and only sends if
there is room to send another packet. Since much of the game
traffic is unreliable the sender needs feedback on its loss rates, so
TNL periodically sends ACKs and NACKs to the sender solely
for the purpose of adapting the window size. This is best
characterized as a receiver-driven flow control mechanism.
Enet uses an adaptive flow technique, but the approach is quite
different than the one used in TNL. The main difference is that
Enet does not acknowledge any non-reliable messages, as this
adds network overhead. Rather, the window size applies only to

reliable packets. Unreliable packets have a probability of being
dropped, which increases as the window size grows. Therefore,
the Enet policy is to drop unreliable packets in order to make
room to send reliable ones, and to make use of the reliable
transmissions for adapting the flow control rather than using
bandwidth to send acknowledgements for unreliable information.
Raknet’s flow control policy works similarly to Enet’s, though it
does not use probability to determine whether to send unreliable
messages. Instead, it suppresses all unreliable messages when the
window is full and sends them otherwise.

4.1.3 Aggregation
Messages sent by games are often small, and so multiple
messages can often be aggregated together into a single packet.
This saves bandwidth consumed by packet headers, as well as
reduces the resources required to process packets along the way.
Aggregation works by combining messages that are queued to be
sent until the maximum packet size is reached, all of the messages
in the queue are sent, or the timer for sending a packet is reached.
The aggregation approaches described below appear in all
libraries except Enet, which does not support aggregation.
Send queues: Outgoing messages are written to an outgoing
message queue, and packets are then generated based on the
queue contents. The packet is filled with messages up to the
maximum transfer unit (MTU) size and sent, potentially
containing many aggregated messages.
Frames: Object replication works by creating replicated objects
that extend a generic replicated type offered by the networking
library. Updates to the replicated objects occur in frames, which
combine updates for the shared data structure to send over the
network. In TNL, Raknet, and Zoidcom, the application
programmer can specify a maximum (and in Zoidcom’s case, a
minimum as well) update rate for each replicated object. The
frames consist of a subset of the replicated objects that is
determined by the frequency preferences. The generated frames
are written to the send buffer and aggregated with other outgoing
RPC traffic. In Zig, object replication is less automated, requiring
the application programmer to define exactly what is included in
each frame. Only one frame can be defined per application and so
the entire set of replicated object updates has to be aggregated by
the application programmer into a single frame. This approach
requires more effort from the application developer, but it also is
more flexible than an automated approach.

4.1.4 Priority
Sometimes, the number of messages in the outgoing message
queue exceeds what can be aggregated into a packet. This
happens when there are large, dense bursts of messages, when the
data rate is low due to limited bandwidth, and it is particularly
common when there are many users in the system. One
mechanism for degrading gracefully is to mark messages with a
priority that indicates the order in which they should be selected
for inclusion in packets. This way, the most latency-sensitive
messages are sent promptly and less latency-sensitive messages
are sent later or dropped from the send queue if their information
becomes stale. By using priority queues, bandwidth can be limited
while allowing the game to function as best as it possibly can. We
observed several different mechanisms for supporting priority.
Numerically assigned and automated: TNL and Zoidcom allow
the programmer to set a numeric priority for each replicated

object. The sending mechanism then sends individual object
updates from highest to lowest priority until the bandwidth
available is used. Low priority unreliable messages that cannot be
sent are dropped, and low priority reliable messages either wait to
be sent or are updated with more recent information.
Numerically assigned but manual: Raknet’s approach is to
provide infrastructure to enable application programmers to
handle their own priority scheduling. Raknet supports different
priority levels for information, but does not dictate how the
priorities are handled. Instead, Raknet provides several abstract
methods that can optionally be implemented by the application
programmer to define how the application handles the priorities.
Reliable messages first: Enet uses a policy where reliable
messages have priority over unreliable messages. The unreliable
messages are dropped according to an adaptive probability. When
bandwidth is sufficient, all unreliable messages are sent.
However, when bandwidth becomes constrained, the probability
of dropping unreliable messages increases adaptively until an
equilibrium state is reached.
RPCs or frames first: Zig allows the priority of RPCs to be set to
one of two policies. The first policy forces RPCs to be sent out
before any additional frames, even if a frame needs to be dropped
in order to send the RPC. The second policy waits until the RPC
can be aggregated with a game frame in the same packet. Frames
do not have priorities.
Deliver at all costs: TNL also offers a “quickest delivery” policy,
which assigns priority higher than any other message and keeps
sending this message until it is known to have arrived. This policy
is described further in section 4.3.2 below.

4.1.5 Bandwidth conservation summary
The techniques reported in this section are all aimed at coping
with limited bandwidth. In particular, games minimize bandwidth
with encoding and compression techniques, they maximize
throughput without exceeding bandwidth limits using adaptive
rate and flow control, they aggregate messages into packets to
reduce transport overhead, and they use priority scheduling to
help to degrade gracefully when bandwidth becomes constrained.
These are all techniques that could benefit real-time groupware.

4.2 Low-cost reliability and ordering
Games need to send traffic with variable levels of reliability and
ordering. Since games are real-time applications, they cannot
simply send all information as reliable ordered since this level of
service results in poor performance, as described in section two
above. Instead, games make use of two main techniques to
achieve reliability - they offer several different combinations of
ordering and reliable delivery, and they manage it at a message
level rather than at a packet level.

4.2.1 Several levels of reliability
Some game messages require reliable delivery, while some
messages do not, and some information needs to arrive in order,
while other information does not, and there are various
combinations of each. All of the game libraries we examined offer
several different QoS options for delivery and ordering. A total of
five distinct reliability and ordering policies appeared in the
networking libraries. For implementation details, see Raknet [R],
as it is the only library that offers all five policies.

Reliable ordered protocols are implemented over UDP by each of
the network libraries. The reliable UDP implementations follow
the design of TCP, but have some key differences as well. For
example, all reliable messages are replied to with
acknowledgements, similar to TCP. However, they use more
responsive flow control algorithms that share logic with unreliable
traffic, and in some cases, they use more elaborate ordering
algorithms that are better suited to the needs of games. Reliable
unordered messages are guaranteed to arrive, but are processed in
the order that they are received. This is a useful policy for sending
discrete events that are independent of other messages, such as a
spaceship being hit by a bullet. The reliable sequenced policy
drops all late arriving reliable information at the receiver, and also
drops packets from the resend queue at the sender when a later
packet is acknowledged. Unreliable unordered messages are
never resent, and the unordered designation simply means that
messages are processed in the order in which they arrive.
Unreliable sequenced messages are not resent, and out-of-order
arrivals are discarded at the receiver rather than processed.
The most interesting of these policies is reliable sequenced. Using
this policy, only the most recent update to a stream of reliable
sequence messages is reliable. The advantage of this policy is that
it offers some of the latency and bandwidth advantages of
unreliable traffic, but ensures that the most recent updates in a
stream arrive. This is a very useful policy for the often bursty
streams in games and groupware since this traffic benefits from
making the most recent update reliable, but previous updates are
unimportant and stale. For example, this policy is well-suited to
telepointer or avatar movement messages.

4.2.2 Message-level reliability
Most real-time distributed media provides reliability support
using a packet protocol. This is fine when most messages have the
same reliability requirements (e.g. VoIP) or when messages are
large (e.g. file transfers). However, when messages are small,
frequent, and have diverse reliability requirements, it is better to
implement reliability at a message level than at a packet level.
All libraries but TNL implement a packet level protocol. This
requires all messages in the packet to be treated equally, and
performance suffers as a result. As a simple example, consider a
packet from a first person shooter game that contains movement
message that uses an unreliable sequenced delivery policy and a
weapon fire message that uses a reliable unordered delivery
policy. Since one of the messages requires reliable delivery,
packet-level reliability would require the system to send this
packet using a reliable protocol. If the packet was lost, the packet-
level protocol would resend the entire packet rather than just the
weapon fire message. This example is shown in Figure 4a.
TNL implements message-level reliability, which enables a single
packet to carry many messages with various levels of reliability.
This is implemented by adding a lightweight reliability header to
every message, and there is no reliability portion in the packet
header. As an example, consider the same scenario as above
where a packet is lost containing an unreliable movement
message and a reliable ordered weapon fire message. The
movement message could simply be dropped since delivery is not
required, and the weapon fire message could be aggregated into
the next packet to be sent, which eliminates the need to resend the
lost packet. This can produce a tremendous efficiency gain in low

bandwidth lossy conditions when network performance becomes
critical. This is shown in Figure 4b.

m1 m2

m3(U) m4(R)

m3(U) m4(R)

(Dropped)

m5

Figure 4a: Using packet-level reliability, when the second packet
containing messages 3 (unreliable) and 4 (reliable) is dropped, the
entire packet needs to be retransmitted. Here, message 3 is resent
even though it is not reliable message, which is inefficient.

m3(U) m4(R)

m4(R)

(Dropped)

m5

m1 m2
Figure 4b: Message-level reliability allows message 3 to be
dropped, and aggregates message 4 into the next outgoing packet,
which is more efficient than sending the entire dropped packet.

4.3 Minimizing latency
The priority policies, flow and rate control techniques, and
efficient encodings described above partially address latency
problems. However, three additional causes of latency remain.
The most critical latency problem occurs when ordered messages
are lost, which causes other ordered messages to be blocked at the
receiver while waiting for the missing message to arrive. A
second source of latency occurs when there is not enough
bandwidth and the outgoing message queue gets backed up. Last,
sometimes time-critical messages need to be sent, and they have
to wait in the outgoing queue or get lost the first time and have to
wait further to be resent. Games have techniques for reducing
latency in all three of these scenarios.

4.3.1 Multiple ordered streams
A significant source of latency comes from having to wait for
reliable ordered messages that are lost or late to arrive at the
receiver. When this happens, all subsequent ordered messages are
blocked at the receiver while waiting for the lost message to
arrive. Games partially address this problem by offering several
unordered policy options, but still, some information must be
ordered and the latency problem can still be significant.
Because of the many message types sent in games and their
diverse QoS requirements, it is common to have independently
ordered messages. For example, ordered chat messages and
ordered firing messages do not need to be ordered together as the
order of firing and chat are independent. In this case, a lost chat
message should not block firing messages.
To avoid this unnecessary latency, Raknet provides up to 32
independently ordered streams. Each stream is ordered relative
only to messages on the same stream. Streams are identified using
a channel number, which is specified as a parameter of each
message sent by the sender. The channel number is encoded in a
message-level header, so although reliability is controlled at a
packet level in Raknet, ordering is at a message level. This allows
messages that are ordered on separate streams to be aggregated
together in a single packet.

4.3.2 The current state data policy
When there is not enough bandwidth, the outgoing send queue
can become backed up. Additionally, reliable messages can
remain in a resend queue until an acknowledgement is received.
While queued, updates to these messages can become available
and the queued information can become stale.
The reliable sequenced policy used in Raknet partially addresses
the problem of staleness in the reliable queue. Rather than
resending reliable data that is no longer current, it drops the
message from the resend queue when it receives an
acknowledgement that a more recent update arrived at the
receiver. However, this policy does not remove stale information
when acknowledgements are not received or when the queue is
backed up due to low bandwidth.
To optimize for this situation, TNL adds a QoS level that they call
“current state data”, which ensures that the most recent update to
information marked with this QoS flag is sent. Before information
is sent, a check is performed to ensure that there is no updated
value available. If there is an updated value, the queued
information is dropped and replaced with the update. This
approach ensures that only the most recent information is ever
sent. However, it is important to note that the source of the
queued information must be known, so this approach lends itself
better to data replication tasks than it does to sending RPCs.

4.3.3 The quickest delivery policy
Some information sent in games needs to arrive before all other
information, either because it is highly latency-sensitive (e.g. a hit
in a first person shooter game), or because subsequent messages
have a dependency on a piece of information (e.g. a new string
table entry). Although it is possible to achieve this using logic at
the application level, it can make the game programmer’s job
much easier to implement this at the network library level.
To ensure that highly latency-sensitive information arrives at its
destination as quickly as possible, TNL includes a policy that it
calls “quickest delivery”. It works by including a message in
every outgoing packet until it receives an acknowledgement that
confirms its arrival at its destination. This guarantees the soonest
possible delivery of a message since in the event of a packet loss
or a delayed packet, the message is delivered with the next packet
that is not lost or delayed instead of having to wait to decide to
resend due to loss and without the need to wait for a late packet.
This policy trades off bandwidth efficiency for minimized latency
since it sends information redundantly, but the penalty is usually
not a large one since game messages are small. However, due to
this inefficiency, the programmer must take care to not overuse
this policy. An example of the quickest delivery policy is shown
in Figure 5.

m1(QD) m2

m1(QD) m3 m4

ACK(m1)
m1(QD) m5 m6

(Dropped)

m7 m8

Figure 5: The quickest delivery policy sends a message with
every packet until it is acknowledged, guaranteeing that it arrives
with the next packet the receiver receives.

5. SHARED WHITEBOARD SCENARIO
The techniques used in games are directly applicable to real-time
groupware. As an example, we consider applying the techniques
described above to a shared whiteboard application. This section
describes steps to applying the types of techniques and presents a
brief analysis of the result of applying them.

5.1 Shared whiteboard network design
Whiteboard message types: We assume that the shared whiteboard
uses eight message types: chat, telepointer, tool selection, grab,
drag, drop, annotation, and session information.
QoS for each message: Chat, annotation, and session information
messages should all be reliable and ordered, but do not require
synchronization with any other information streams, so they are
all sent over their own independent channels. These message
types are not very latency sensitive, and so priority can be set
low, as they can be sent later in favor of more latency sensitive
information. Telepointers are highly latency sensitive, and do not
require reliable or ordered delivery, as late information is not
displayed in this design. Since telepointers are not dependent on
any other messages, they are sent along their own ordering
channel. The message types related to drawing operations need to
be ordered with one another, as the effect at the receiver will be
incorrect if they are processed out of order. The most latency
sensitive drawing operations are grab and drop, as these operation
lock the object for modification, and so a quickest delivery (QD)
policy is applied to these message types. Drag operations, like
telepointers, do not need to be reliable, although they do need to
be ordered with the other drawing operations, so drag methods are
given a sequenced ordering policy and high priority. Tool
selections are required to be ordered within the drawing channel,
and their priority should be high so that the user’s avatar can
promptly reflect tool changes. Annotations are designed to update
in real-time, so individual messages are individual characters. In
order to preserve the metaphor of typing, they are given a medium
priority so that latency is reduced. These QoS requirements are
shown in table 1 below.

 Reliable Ordering Channel Priority
Chat Yes Ordered 0 Low
Tele No Sequenced 1 High
Tool Yes Ordered 2 High
Grab Yes Ordered 2 QD
Drag No Sequenced 2 High
Drop Yes Ordered 2 QD

Annotation Yes Yes 3 Medium
Session Yes Yes 4 Low

Table 1: QoS requirements for individual message types in a
shared whiteboard.
Efficient message encoding: Chat, session information, tool
selection, grab, and drop are all discrete events and are therefore
best modeled as RPCs. For each of these, we register an RPC with
bit lengths for parameters specified where appropriate. For
example, [x.y] coordinates should be encoded such that their
limits do not exceed the maximum workspace dimensions, tool
selections should be encoded so that the tool parameter does not
exceed the total number of tools available to the system, etc.
Telepointers and drag operations are modeled as replicated data,
and the parameters are encoded using minimum bit lengths.
String compression: The only strings sent by the system are those
from chat messages and from pasting text strings to annotations. It

is reasonable to assume that the names of users will be frequently
typed in chat, and so usernames are added to the string table when
users join a session. Other strings will be compressed using
adaptive Huffman encoding, where the characters frequencies are
tracked and the Huffman tree is rebuilt and sent out periodically.
Adaptive rates: Telepointers and drag operations are streaming
types and are assigned a minimum update frequency of 0 updates
per second and a maximum frequency of 30 updates per second.
The rates will adapt according to the state of the network,
maintaining the maximum rate when network resources are
plentiful and decreasing when resources become constrained.
Since telepointer updates and drag messages will comprise most
of the messages sent by the system, this adaptive frequency range
is all that is necessary to allow the system to degrade gracefully
when network resources are constrained.
No stale information: Telepointer and drag operations are given
TNL’s current state data policy, which ensures that only the most
up-to-date values are sent. This is possible because the telepointer
and drag messages are modeled as replicated data rather than as
RPCs. This policy will both reduce latency and traffic.

5.2 Networking design implications
Less bandwidth usage: Since discrete operations are uncommon
compared to telepointers, and drag operations and telepointers use
the same amount of bandwidth, the maximum bandwidth for a
shared whiteboard can be reasonably approximated by
considering only that used by telepointers. Using the network
design described above, the bandwidth for sending telepointers
would be a tiny fraction of what the event-driven TCP model
used. Under ideal network conditions, the above approach would
consume just over 11Kbps per connected client (UDP/IP header:
28 bytes; custom packet protocol: 12 bytes; message protocol: 3
bytes; telepointer payload: 5 bytes; send rate: 30 messages per
second, 1 per packet). This is 1/3 less bandwidth than the version
GroupKit uses described in section 2 above.
However, when resources become constrained, the flow controller
will begin to aggregate telepointers, which results in a substantial
bandwidth saving. For example, aggregating 3 telepointers into
each packet would result in a bandwidth usage of 5Kbps per client
due to the reduction in packet headers that need to be sent.
Additionally, as bandwidth becomes so constrained that it can no
longer support 30 updates per second, the telepointer rate can
drop, reducing the required bandwidth to suit the conditions.
More timely information: Telepointer and drag operations will
remain highly responsive, even if network conditions are lossy.
The high priority ensures that they will be sent out whenever
there is enough bandwidth to support them before other
operations that are more latency tolerant. In the event of packet
loss, telepointers will not be blocked while waiting for other,
reliable information to be sent, and the most recent telepointer
positions will be used. In the event of a burst loss or temporary
network congestion, the most recent telepointer positions will be
sent as soon as the traffic can get through.
Grab and drop messages will always be sent ahead of any other
types of information, so users will always know as soon as
possible when another user has picked up or let go of an object in
the workspace. This will enable faster turn-taking and fewer
conflicts over objects. By sequencing and ordering all drawing

operations, the operations will appear to work similarly to how
they work on the sender’s machine, regardless of network effects.
Degrades gracefully: When bandwidth is constrained, the network
library will send packets less frequently and aggregate more
messages into each packet. This adds a small amount of latency,
but maintains smoothness. In extremely constrained conditions,
the send rate of telepointer and drag messages will be reduced,
which will reduce the smoothness and/or accuracy of the streams,
but the application will continue to function, as these messages
are traded to ensure that the more critical messages get through.
Better overall usability: The user experienced will be greatly
improved over an event-driven TCP model. Under ideal network
conditions, this network design will perform the same as TCP-
based implementations. However, as network conditions become
worse, this networking design will continue to support a highly
usable shared whiteboard, promising low latency, up-to-date
telepointer and drag positions, and sustainability down to
comparatively very low amounts of bandwidth.

6. DISCUSSION
This study of networking techniques used in multiplayer games
produced two important results: it identified a set of networking
techniques that are known to work over the Internet, and it
identified some ideas for future research.

6.1 Lessons for practitioners
This paper presents a large number of networking techniques that
are ready to use for building real-time distributed groupware. The
techniques are presented at a high level rather than in detail, but
the details are all found in the open source libraries for anyone
needing more information. These techniques are particularly
useful because they are known to be effective from years of
experience in games and the game networking libraries serve as
high quality examples of how to build these techniques. The other
contribution to practitioners is that the principles that drive these
techniques has led to a set of networking guidelines that are
valuable to developers: limit bandwidth use, use appropriate
reliability and ordering policies, and degrade gracefully.
Additionally, by examining game networking libraries and
describing their techniques, this paper shows that these libraries
are candidates for use for building groupware applications.

6.1.1 Limit bandwidth use
Games use a variety of techniques for reducing the required
bandwidth. The reason for this is that minimizing traffic is critical
to performance. Some of the important bandwidth minimization
principles that game networking libraries use are:
Enable hand-tuning: Make it easy for application programmers to
efficiently encode their messages.
Avoid sending strings: Send primitives as minimum bit-length
primitives, encode RPCs numerically, and use tables to encode
strings as primitives. Avoid sending strings whenever possible.
Aggregate messages: When bandwidth is insufficient to send
messages as they are generated, delay them slightly so that
several can be aggregated into each packet. The small amount of
added latency is a reasonable tradeoff for the increased efficiency.
Compress strings: It is useful to always attempt to compress
strings using Huffman encoding or other lossless techniques. If
the result is smaller, send it, and if not, send the original.

Imply parameters: Known bit-lengths of headers, ids, and values
can imply parameter names. Never send these names, only values.
Avoid sending stale information: Take care to ensure that every
message that is sent is useful to the receiver, and replace outgoing
information with current values if updates are available.

6.1.2 Degrade gracefully
Applications should be prepared to cope adaptively with lower
levels of network service. Some principles that appear in game
networking libraries are:
Use adaptive flow control: Flow control using an adaptive
window size is an effective technique for delivering timely
information when bandwidth is sufficient and for driving
aggregation, priority scheduling, and rate control policies when
bandwidth is constrained.
Determine frequency ranges: By using minimum and maximum
update frequencies, the application can degrade its traffic flows
appropriately to cope with limited network resources.
Set priorities: Not all messages have the same level of
importance, and close attention to assigning priority to messages
is important when bandwidth is constrained.
Provide information to higher layers: Applications need to know
when network conditions are poor, as there is a great deal that an
application can also do to adapt to these conditions at runtime.

6.1.3 Use appropriate reliability and ordering
A major source of latency is due to blocking incoming messages
that are out of order. This scenario needs to be avoided as often as
possible using the following principles:
Do not order unnecessarily: Whenever possible, avoid ordering
altogether. Just because a message needs to be delivered reliably
does not imply that it has to be ordered as well.
Order independently: Games and groupware send a wide variety
of different messages types, and ordered messages can be grouped
into independently ordered streams.
Use sequenced policies: Sequenced policies can be particularly
appropriate for interactive applications because they keep
messages ordered, avoid blocking, and do not send or resend stale
information. Unreliable traffic can be cheaply ordered with
reliable information using an unreliable sequenced policy.
Likewise, reliable sequenced policies are also useful because they
do not block unnecessarily.

6.1.4 Use game networking libraries
The reason that network gaming libraries have become common
is that it is not trivial to build good network code for games, and
the same holds true for groupware. The poor performance seen in
academic groupware applications is mostly the result of not
devoting particular attention to network designs and optimizations
rather than not having the capability to do so. An effective
approach to building groupware that performs better over the
Internet without the cumbersome task of writing efficient
networking code is to start using existing game networking
libraries. Games and groupware have many of the same
requirements, and game network libraries meet the needs of
groupware applications more closely than any other network
implementations that are available. Additionally, they are robust
and well-tested through real world use, and are likely to be more

efficient to integrate and use than it is to develop a less efficient,
less robust approach from scratch.
Eventually, groupware may have its own networking libraries that
are better-suited to the needs of groupware. Until then, game
networking libraries represent the best low-effort option for
developers who want their applications to be used on the Internet.

6.2 Areas for future work
6.2.1 Improvements to techniques
Many of the techniques presented here offer opportunities for
improvements. In particular, design aspects of some techniques
vary among libraries, showing that determining the best method is
not trivial and more work is required. Also, some of the
techniques require considerable effort from the application
programmer, and this effort can likely be reduced by automating
some of these functions. Areas for future work include:
Automating encoding: Game libraries have made it easier to hand-
tailor message encodings, but hand-tailoring still demands
considerable attention from the application programmer. New
methods that use the same principles and can approach the same
level of efficiency but reduce the load on developers are needed.
The techniques used in games can guide the development of
easier to use techniques. Some ideas include adaptively
determining minimum bit-length encodings for primitives,
dynamically building string tables based on frequencies, and
simpler programming interfaces for encoding shared information.
Better string compression: Strings in games and groupware are
short, frequent, and most of the redundancy is among strings in
separate messages rather than within individual strings. However,
most lossless techniques for compressing strings assume that the
strings are long and that the redundancy is contained within the
string. Raknet’s approach of dynamically generating new
Huffman trees based on observed runtime character frequencies is
a good example of a compression technique tailored to suit the
characteristics of groupware, but there are certainly more
opportunities available for more efficiently compressing strings.
Adaptive window sizes for groupware: Game networking libraries
use a variety of techniques for adaptively controlling window
sizes. It is unclear which of these techniques is best, and it seems
to depend on the characteristics of the groupware traffic. Further
work is needed to determine how to most effectively control
adaptive window sizes in groupware, paying close attention to the
bursty nature of interactive traffic, variable traffic patterns among
applications, and diverse requirements for reliability among
message types. In particular, how to best address the problem of
controlling window size in unreliable traffic should be addressed.
Better aggregation policies: Aggregation in game networking
libraries is driven by the window size only, but since aggregation
adds latency, it should also be a function of the latency
requirements of the information being sent. For example,
aggregation should be avoided when low latency is required, and
aggregation should be enabled when the added latency does not
impact usability. QoS requirements and the network window size
should both be considered by an effective aggregation policy.
Specialized delivery policies: TNL’s quickest delivery and
Raknet’s sequenced ordering are examples of specialized delivery
policies that are well-suited to the needs of games and groupware.
There are undoubtedly more scenarios that are unique to

groupware traffic that could benefit from having policies tailored
for the scenario. At a minimum, policies that address quality of
experience issues beyond timeliness such as smoothness and
accuracy are required. Additionally, policies should address the
more complex aspects of collaboration such as degree of interest,
focus and nimbus, and closely-coupled tasks would be beneficial.

6.2.2 Lessons for developing new techniques
Some of the techniques used in games take advantage of the
characteristics of groupware traffic. These same characteristics
can be applied to drive new groupware networking techniques.
The characteristics of groupware traffic that can lead to new
techniques are:
Streaming awareness information characteristics: Real-time
groupware traffic consists mostly of streaming awareness
information. This traffic is often bursty, messages are small, and
messages have high frequencies. Game networking libraries have
made use of these characteristics to enhance their aggregation
policies, compression and encoding techniques, and scheduling
techniques. Making use of these same characteristics can drive
future techniques and optimizations to existing techniques.
Messages have diverse QoS requirements: Several of the
techniques used in games are the direct result of observing the
QoS requirements of game message types. The diverse QoS
requirements of groupware can lead to further efficiency gains as
the requirements are better understood and as policies and
techniques are developed to take advantage of the requirements.

7. RELATED WORK
There is an abundance of work from various domains that is
relevant to the techniques presented here. Many of the techniques
used in games are familiar, although they have been tailored
specifically to the needs of games.
A recent survey [5] of application layer networking techniques for
groupware presents the most comprehensive collection of
techniques from both groupware and from related domains such
as multimedia, IP telephony, and distributed systems. Although
some related techniques are mentioned, none of the techniques in
the survey are the same as any of the techniques presented here.
Smed et al has surveyed techniques used in network games
specifically [16]. This report reviewed published work from
military simulations, networked virtual environments, and
networked games. The survey describes aggregation and
compression as useful techniques, but the specifics of the
techniques are different from those we observed in games.

8. CONCLUSION
This paper presents the first analysis of game networking based
on source code and documentation from real game networking
libraries. The techniques and principles presented here are the
result of significant real-world experience from the gaming
industry in delivering a quality experience to users over the
Internet. These techniques and principles are directly applicable
to groupware, and applying them will drastically improve the
performance of groupware when used under constrained network
conditions. This work also has produced new directions for
groupware networking research that are based on the current
state-of-the-art in game networking.

Groupware aims to enable collaboration among people who are
located all over the world. To do this, we must find ways of
coping with the limitations of today’s Internet. Network games
have been successfully providing rich, real-time, interactive
experiences to groups of people located all over the world for
over a decade. By bringing the techniques that games use to
groupware, we can further promote collaboration among
individuals everywhere.

REFERENCES
[1] Begole, J., Rosson, M., Shaffer, C. Flexible collaboration
transparency: supporting worker independence in replicated application-
sharing systems. Trans. Comput.-Hum. Interact. 6, 2 (Jun. 1999), Pages 95
- 132. 1999.
[2] Boyle, M., Greenberg, S. GroupLab Collabrary: A Toolkit for
Multimedia Groupware. CSCW 2002 Workshop on Network Services for
Groupware. 2002.
[3] Burridge, R. Java Shared Data Toolkit User Guide. Sun
Microsystems, JavaSoft Division. Available from https://jsdt.dev.java.net.
2004.
[4] Chabert, A., Grossman, E., Jackson, L., Pietrowicz, S., & Seguin, C.
Java object-sharing in Habanero. Communications of the ACM, 41(6), 69-
76. 1998.
[5] Dyck, J. A Survey of Application Layer Networking Techniques for
Real-time Distributed Groupware. University Of Saskatchewan Interaction
Lab Tech Report, TR-2006-01. Available from http://hci.usask.ca. 2006.
[6] Enet. Enet Features and Architecture. Available at:
http://enet.cubik.org/Features.html. 2003.
[7] GarageGames. Torque Network Library Design Fundamentals. TNL
1.5.0, 23 Feb 2005. Available at:
http://opentnl.sourceforge.net/doxydocs/fundamentals.html
[8] Graham, T.C.N., Urnes, T., Nejabi, R. Efficient Distributed
Implementation of Semi-Replicated Synchronous Groupware. Proc. UIST
1996.
[9] Greenberg, S. and Roseman, M. Groupware Toolkits for
Synchronous Work. Computer-Supported Cooperative Work (Trends in
Software 7), Chapter 6, p135-168, John Wiley & Sons Ltd, ISBN 0471
96736 X. 258pp. 1999.
[10] Gutwin, C. Effects of Network Delay on Group Work in Shared
Workspaces. Proc. ECSCW 2001.
[11] Hill, J., and Gutwin, C. The MAUI Toolkit: Groupware Widgets for
Group Awareness. Computer-Supported Cooperative Work, 13 (5-6), 539-
571. 2004.
[12] Marsic, I. Real-Time Collaboration in Heterogeneous Computing
Environments. Proc. ITCC 2000, p222-227.
[13] Rakkarsoft. Raknet Manual. Available at:
http://www.rakkarsoft.com/raknet/manual/. 2004.
[14] Ruppel, J. Zoidcom 0.6.2 Manual. Available at:
http://www.zoidcom.com. 2005.
[15] Scientific Toolworks, Inc. Understand for C++ User Guide and
Reference Manual. Available at www.scitools.com. 2005.
[16] Smed, J., Kaukoranta, K., and Hakonen, H. A Review on
Networking and Multiplayer Computer Games. Technical Report 454,
Turku Centre for Computer Science, 2002.
[17] Xia, S., Sun, D., Sun, C., Chen, D., Shen, H. Leveraging single-user
applications for multi-user collaboration: the CoWord approach.
Proceedings of ACM 2004 Conference on Computer Supported
Cooperative Work, Nov 6-10, Chicago, IL USA.
[18] Zig. Zig 1.4.0 (Beta). Downloadable from http://zige.sourceforge.net.
2005.

	1. INTRODUCTION
	2. NETWORKING IN ACADEMIC GROUPWARE
	3. OPEN SOURCE GAME LIBRARIES
	3.1 Game networking libraries

	4. GAME NETWORKING TECHNIQUES
	4.1 Bandwidth conservation
	4.1.1 Encoding and compression
	4.1.2 Rate and flow control
	4.1.3 Aggregation
	4.1.4 Priority
	4.1.5 Bandwidth conservation summary

	4.2 Low-cost reliability and ordering
	4.2.1 Several levels of reliability
	4.2.2 Message-level reliability

	4.3 Minimizing latency
	4.3.1 Multiple ordered streams
	4.3.2 The current state data policy
	4.3.3 The quickest delivery policy

	5. SHARED WHITEBOARD SCENARIO
	5.1 Shared whiteboard network design
	5.2 Networking design implications

	6. DISCUSSION
	6.1 Lessons for practitioners
	6.1.1 Limit bandwidth use
	6.1.2 Degrade gracefully
	6.1.3 Use appropriate reliability and ordering
	6.1.4 Use game networking libraries

	6.2 Areas for future work
	6.2.1 Improvements to techniques
	6.2.2 Lessons for developing new techniques

	7. RELATED WORK
	8. CONCLUSION
	REFERENCES

