Improving List Revisitation With ListMaps

ABSTRACT

where items have textual labels, it requires cogmieffort

Selecting items from lists is a common task in many and focused attention. A listbox provides few opaities

applications. Alphabetically-sorted listboxes ahe tmost
common interface widget used to accomplish thisciin,
but although general they can be slow and frusigatd
use, particularly when the lists are long. Also,ewhthe
user regularly revisits a small set of items, listiss provide
little support for increased performance througpegience.
To address these shortcomings, we developed a iséw |
selection device called a ListMap, which organitiss
items into a space-filling array of buttons. Itemever
move in a ListMap, which allows people to make ofe
spatial memory to find common items more quicklye W
compared selection of font names from a set of s
using both ListMaps and standard listboxes. We dotlrat
although listboxes are faster for unknown itemsisitation
leads to significant performance gains for the Mesp.

Author Keywords
List selection, listboxes, ListMaps, revisitation.

ACM Classification Keywords
H5.2 [User Interfaces]: Interaction styles.

INTRODUCTION

Selecting items from lists is a common task in entr
interactive systems, and the most common way toentiadx
selection is through a scrolling list box. For exden
people use listboxes to select currencies, langapat
names, or functions from a variety of programs (Fég 1
and 2). Selecting an item from a listbox involvesing the
scrollbar to perform an alphabetic search until dlesired
item is visible, and then clicking the item witletmouse.

Although listboxes are general, and will work imalst any
task situation, they are not always optimal. Orek ténat
listboxes support poorly is selection of items theg well
known. In many cases, people use only a smallfsiétros
from the list — for example, people normally usenaall set
of fonts, and select only a few countries or larggrsaout of
the possible alternatives.

In these situations, using listboxes can be frtisggaTheir
alphabetical arrangement makes it equally diffi¢altfind
any item in the list, irrespective of the user’sndieant
interest in a small set of recurring items. Eveoutih the
user knows exactly what they want to find, and thaye
found it many times before, they must scroll thiouge
items in a similar manner to their first searchthAlugh this
approach is robust and can be used reliably insgogtion

for users to become experts — in particular, alptiaél lists
poorly support using memory and pattern recogniten
aids to task completion.

Some listboxes provide a shortcut to recently utads by

adding a sub-list, which we term a ‘recency cacte'the

list (see Figure 1, right). This can help, but ases where
the desired item is no longer in the cache, the isserced

to carry out two searches instead of one. Priczaneh has
also shown that adaptive split-menus such as thése

limited performance improvements [7].

In this paper we present and evaluate the ListMapnew
way to interact with list data that allows peopte use
spatial memory to speed up the selection of preslyeseen
items. ListMaps organize items into a space-fillargay of
buttons, with all items visible at once in statcadtions (see
Figure 2). We compared ListMaps and listboxes sar
study where participants were asked to select fiyote a
set of 220 names.

TimesMewRoman (-(10 - | B 7 U | =
' Times New Roman

T BmdLea Huad (TC

% ehilek

B o futeter ST

T Arial

v hgency B

T Ake

T Al Mober

B b feper

% ALGERIAN

T Allegro Bt
% Andale Maono v

¥

Language

Mark selected text as:

Maltese A
Manipuri

fiaori

Marathi

Mongolian

Mongolian (Mongolian) w

Figure 1. Left: language selection list. Right: font selection list
with recency cache (both Microsoft Word XP).

LOCATION MEMORY IN INTERACTIVE SYSTEMS

Spatial object location memory is knowledge of weher
things are located in a space [8,16]. Spatial kedgé in
two-dimensional spaces is built up primarily thrbug
interaction; that is, people remember locationsrafaving
had experience with that location [5]. People may
remember particular items based on landmarks irsphee,

or with more experience, may be able to maintamase
complete ‘mental map’ in which they can remembed an
find many different objects very quickly [8,17].

For example, Robertson and colleagues tested aalspat
memory technique (the Data Mountain) in which peopl
placed thumbnails of web pages on a simulatedniedli

plane [4,17]. Once 100 pages were placed, partitipa

carried out a number of find-and-select retrieeasks. The
study found that retrieval was significantly fasteith the
spatial technique than with a standard bookmarkysgem.

In addition, the memory of where items were placed shown

persisted over a long time: participants who regdrisix
months later were able to retrieve items at theeskwel of
performance, with only brief retraining [4].

The items in these studies contained symbolic méiion
(thumbnails, colours, icons and names) as well padied
position. An early study by Jones and Dumais [Tveed
that spatial memory fares less well when locat®the sole
cue to retrieval. In their experiments retrievalitems that
were only identified by location was slower andsles
accurate than when items were represented by rEineee

is also evidence that location learning is dependenthe
amount effort used when interacting with objecis [6

SELECTING FROM LISTS

List selection has been extensively researchedicpkarly

in the form of menu selection. Sears and Shneidelt8]

described ‘split menus’ for enabling faster setattiof

frequently accessed menu items. The technique grbap
set of pre-determined menu items ‘above the sptitthe
top of the menu, reducing the target acquisitiostagice.
Their evaluations showed that static split menasyhich

the frequent items do not adapt to user actiotswahster
selections than traditional menus. They also sugdes
further work on split menus that adapt to the ssenenu
selection patterns. Findlater and McGrenere

recency — in many tasks, a recently-used item ishnmiore
likely to be used in the near future than a rangechiosen
item. For example, repetitive patterns of use hbeen

in operating system commands [9], and in
navigation on the WWW: Tauscher and Greenberg [22]
found that more than half of pages seen were tsyiand
that revisitation occurs mainly to the last few pagisited

— the last ten pages seen cover about 85% of tevisi

Revisitation can be supported with structures gt
menus, as described above, or by visualizations of
interaction history. Hill et al.’s idea of ‘read a® adds
graphical information to computational objects nalicate
the history of their use [10]. Depending on how higtory

is gathered and displayed, the visible marks candeel to
determine which items have been visited more régceat
study of ‘visit wear’ (read wear to indicate whidlems
have been visited) showed that visual recency médion
can improve revisitation in distorted spaces where
memorability is difficult [20].

LISTMAPS: SPATIAL LAYOUT OF LIST DATA

A ListMap takes the items in a list and lays themt o a
space-filling two-dimensional grid, ordered alphtdzdly

by row (see Figure 2, right). Items are sized sthett they
all fit into the window, ensuring that they willlde visible
and that no scrolling will be required. Clicking an item’s
rectangle in the ListMap is equivalent to clickitige item
in a listbox. The idea is therefore similar to thel palettes

[7] used in graphics applications, although ListMapsidbuse

implemented and evaluated these suggestions, caompar icons to represent items.

split-menu performance across static,
adaptable variants. Their results showed thatcsttlit-
menus are reliably faster than adaptive ones, édad t
adaptable split-menus are faster than adaptive aen
users are guided by examples.

Finally, scrolling has also been studied in detzith in the
context of lists and in larger text documents. Aitbh

scrolling is common, it has been found to have tmain

problems: it causes motion blur at high scroll siseand it
causes problems for spatial memory [3,21]. A vgriet

techniques have been introduced to address the memte
issues (e.g., [3]), and work has also looked @ebetays of
supporting spatial memory (e.g., [13]) in scrolkar

REVISITATION AND RECENCY CACHING

Learning spatial locations is a function of expecie with
the items in the data space [5,6]. Therefore, thgrek to
which a user will be able to build a mental mapeiated to
the amount of revisitation in the task. Differeiituations
have different revisitation patterns, but in manfprmation
tasks, users repeatedly go back to a small sétobi

One type of revisitation is brought about by usordy a
limited set of items. For example, McGrenere [I&irfd in
a survey of Microsoft Word users that people usky an
small number of the available commands on a redhdais
(a mean of 40 out of 265). Other revisitation arif@ough

adaptive an

dFrom this basic layout, several additional featuees

possible to improve selection and search.

» Labels As much of the item’s label as possible is writte
into the rectangle. The letters on each label gwe
reasonable indication of the item’s name (Figurgght).

e Tooltips Since the partial labels do not completely
differentiate some items, the full name is shownm itag
that follows the user’'s mouse cursor (see Figure 2)

» Selection highlight The border outline of the currently
selected item is highlighted.

e Colouring Items can be coloured to increase visual
differentiation in the set. Each item in the ListMés
randomly assigned one of five colours, but coloould
also represent other item attributes.

* Marking. Iltems can also be visually marked to indicate
attributes such as recent selection (i.e. the mceache
used in the study below, shown in Figure 2), freqyeof
selection, or user-chosen bookmarks.

The main design principles in a ListMap are thatitaims
are always visible, and that they do not move. Hhiisws
users to gradually change from using alphabeticchetp
spatial memory as their primary search strategy
frequently-used items. The spatial organizatiomisnded
to solve the problem described earlier: listboxequire
approximately equal search effort regardless afition,
but retrieving an item in a ListMap should beconasier

for

7 QEd|7 EEa

Rockwell Condensed

Rockwell Condensed
Calisto MT] dal Arial | Ari
Broadway
Bookshelf Symbol 7
Bradley Hand ITC

[Bodd
[cait |Gent|Cent [Cent]
[Croo|CurigEci|Eiep [EngilEngr Eres Esrelrat.
Forts Fran Fran|Fran [Fran|Fran
*r EHES
ke ke

Brush Script MT [Foof
Centaur %Eﬂ
Niagara Solid *ﬁsmm Goug
Haettenschweiler %%% =
Old English Text MT %%
Andale Mono EEHIEHE'_"
Agency FB
Alba E?'E!'E.-EEEEIEEI |snag|souSiac |
Alba Matter EHBEEEEEEBEI-EEE-
Alba Super
Alnarian b

Figure 2. Listbox interface (left) and ListM ap (right), both
showing recency cache. Cuefor next selection is shown above
each interface. Only one system was on screen at atime.

and faster with repeated retrieval as spatial mgmor

improves. This theoretical advantage is tested ha t
experiments described later.

The graphical layout of a ListMap limits the numbafr
items that can be shown in a given space, wheré&athax
can show any number of items in the same area.dBaise
the sizes of lists and listboxes in current inteefa
however, it appears that ListMaps would not requiagor
interface changes. The minimum size of an itemaregie
that contains one letter of a label is approxinyatedx10
pixels; this allows more than 750 items to be showm
240x320 space.

COMPARISON STUDY: LISTBOXES AND LISTMAPS
To evaluate the idea of organizing list items siiti we

carried out a study in which we compared retrieval

performance with standard listboxes and ListMaps.

Participants

Twelve participants (7 women and 5 men) were réetui
from a local university. Participants ranged in &gen 20
to 35 years and averaged 25 years. All were familigh
mouse-and-windows applications (i.e., more thano8r&

navigate the list in four ways: by clicking the apd down
arrow buttons on the scrollbar; by dragging theokcr
thumb; by clicking in the trough above or below gwoll
thumb; and by using the scroll wheel on the mouge.did
not include keyboard bindings because many sitnatio
(e.g., pen-based computers) do not allow keyboapditi
The recency-cache version of the listbox addedigmpnu
of items to the top of the list, duplicating iterttsat had
been recently selected. The recency set could dibfdost
ten items. Each new selection copied the item ¢otdlp of
the split-menu, moving all others down by one posijtand
causing the removal of the “lGtem from the recency
cache. The items in the recency cache were displaye
blue with less indentation than others (see FigRireto
clearly set them apart from regular list items.

The basic version of the ListMap worked as desdribe
earlier: items were arranged alphabetically in rows
randomly tinted with one of five colours (pilot dias
showed that the random colouring helped people to
remember locations), and annotated with the fiest f
letters of the item’s name (see Figure 2). The riaiine of
the item under the mouse cursor was shown in dirflpa
box beside the cursor, and the item currently urtter
cursor was highlighted with a white border. The yonl
difference between the recency-based ListMap ared th
basic version was that in the recency version,ldlse ten
items selected were highlighted with a white bor¢se
Figure 2).

In all versions of both interfaces, the size of tlisplay

window was 255 x 280 pixels, which is also the siz¢he

font menu of MSWord, as seen in Figure 2.

Tasks, Experimental Conditions and Dataset
The study used a set of 220 font names as thdtdata for
both interfaces. This dataset is directly takemfra real-

world task — selecting font names from a listboxaimord

processing program. The list was taken from theb&ints
included with a standard distribution of MicrosoXtfice.

Each selection trial was cued within the user fats by

showing the name of the next target font belowvtiredow

per week) and all used word processing applicationstitle-bar (Figure 2).

regularly (at least 1 hour per week).

Apparatus

A custom system was built in Tcl/Tk for the expegimh
The system presented either a listbox or a ListMap
prompted users to select sequences of items ierdiff
experimental conditions. The study was conducted &4
Windows system with a standard optical mouse (foly a
mouse wheel) and a 1024x768 display.

Interfaces used in the study

Two versions of both the listbox and the ListMapraeve
used, one with a recency cache, and one witho.bEsic
version of the listbox displayed an alphabeticstl dif items,
shown in 12-point Arial (see Figure 2). The useuldo

The tasks with each interface were administeredldacks

of ten trials, with six blocks for each of thregpeximental
conditions. Each condition is designed to compane tvell

the listbox and ListMap interfaces support a patécstyle

of interaction, as follows:

» Random selection This condition was administered
without the recency-cache features of the listbax o
ListMap interfaces. It was designed to provide base
values for selecting items that the user does setamn a
regular basis (i.e., no revisitation). Target itemsre
chosen randomly from the full set of 220 font names

 Revisitation This condition was administered without the
recency-cache features of the listbox or ListMap

interfaces. It was designed to examine whether,envd RESULTS

quickly, the participants’ performance improves on We organize the results below by the three experiate
repeated iterations with both interfaces in theeabs of ~ conditions: random selection, revisitation and
explicit recency support. In this condition, the revistation+recency. Across all 4320 trials (12ticgrants,
participants repeatedly selected items from a waylset 60 trials, 3 conditions, 2 interfaces) the tasksrewe
of ten items. Each of the six blocks contained iiaé for completed quickly (overall mean 4.9s, sd 1.9), wigw
each of the ten times, but in a random order. errors (< 6%).

 Revisitation+recency In this condition, the recency-

cacfgtla Leeﬁqrej Of the(;iftbox and Lits;Ma?f intt.erséavzzgqre The ListMap interface was slower than the listbateiface
enabled. 1t 1S designed to compare the etlectienene in random tasks (R=12.4, p<.01), with means of 6.6s (sd

recency features across the two inte_rface t.ypegl"s Th 2.3) and 5.3s (sd 1.4). There was a reliable miacefor
condition also used a more realistic notion of sgation trial block (Fss7.7, p<.0l), with task times reducing

tha_n _tthde reIzV|S|ta'E[|0nFcond|t|(?1n_tby addlngts((j)rtneﬁ:;)n- across the first and second blocks, but relativahble
revisited elements. or each Item presented oS, performance thereafter (see Figure 3).

there was an 80% chance that the item would berdraw
from the working set of ten fonts (the same tenduse There was no interfacexblock interactiorns &0, p=.4),
above), and a 20% chance that the item would beetho suggesting that neither interface provided a marked
randomly. Therefore, there was an 80% chance t®at t experience-based advantage over the other withoralyd
target would be in the recency cache (i.e., inrdwency selected targets.

list for the listbox, or highlighted in white forhé
ListMap). This manipulation of revisitation probktyi is
intended to provide insights into whether ‘noisgsks 8
(outside the routine set) interfere with the besedif the
recency cache with either interface.

Random selection

9 ‘ O listboxes ‘
B ListMap

~
-

o

@

Procedure

Participants were first introduced to the two diffiet list
interfaces, but populated with a different datasetthe
experimental conditions. People carried out tenctma
trials with each interface. They were then intrastlito the
study system and font dataset, and were randontlynpu A , s . 5 ;
one of two order groups (listbox first or ListMaipsf). Trial block

Mean task time (seconds)
w s

N

N

Completing each trial within a block caused thetrfext
target to be immediately displayed in the title.Boftware
automatically logged task completion time and &Hm
selections, including incorrect selections. Incofre Revisitation

selections had no effect on the interface state @me The |jstMap interface provided a significant penfiance
target remained displayed), and the task time noet 0 aqyvantage over the listbox interface in the resfidn
accumulate regardless of errors. condition (k1=9.9, p<.01), with means task times of 3.8s

All of the participants completed all of the blockith one ~ (sd 1.4) for the ListMap, and 4.6s (sd 1.3) for lisebox.
interface before proceeding to the other. With eachThere was also a significant main effect of tribdk
interface, the six blocks within each of the three (Fsss=7.7, p<.01), with more gradual mean time
experimental conditions were always completed ie th improvement through blocks one to four than obsinve
orderrandom-selectiofrevisitation revisitation+recency. the random selection condition (see Figure 4).

After completing the six blocks of ten trials wittach ~ Unlike the random condition, there was a signiftcan
interface/condition combination, the participantsnpleted ~ interfacexblock interaction ¢ks=2.8, p<.05). The
a short preference questionnaire; the questionmaigealso interaction, apparent in Figure 4, is explainedtisy steeper

Figure 3. Mean completion times by trial block, random-
selection task. Error barsshow standard error.

given at the end of the study to capture overafgrences. and more continual performance improvement across
blocks when using the ListMap interface. Across $ie
Study Design blocks, mean performance with listboxes improvedhbly

Data from each of the three conditions are sepgrate 0.28s (6%), compared to 1.74s (35%) with ListMaps.

analysed in 2x6 repeated measures designs forr$acto \ye gnalysed the fit of the data to the power laypraktice
interface-type(listbox or ListMap) andlock-numbe(first 115 5 robust model of human skill acquisitionstates that
to sixth block). The primary dependent measure lin @ hortormance time improves across trials accordmghe

analyses is task time. Error data and questionnairts-fOIIOWing formula: log(T) = C - arlog(n) , whereT, is the
responses are also analyzed and reported. n ' "

=3 listbox

B ListMap

- R =044

I

r Il

R2=0.96

Mean task time (seconds)

1 2 3 4 5 6
Trial Block

Figure 4. M ean completion timesfor revisitation task.
Power -law regression line of best fit isoverlaid.

time to complete triah, C is the time on the first trial, and
is the steepness of the learning curve. Regressiafysis

of performance across blocks with ListMaps shows an

almost perfect fit with the power law of practiaarrhula,
with R?=.96, p<.05, and=3.58. The listbox data, however,
poorly fits the model, wittR?=.44, p=.11 (Figure 4). This
suggests that listboxes poorly support traditionatlels of
skill acquisition.

Revisitation+Recency

To recap, trials in the revisitation+recency coiogitwere
generated with an 80% probability of being withimet
revisitation set and a 20% probability of being damly
selected. In addition, the revisitation set was shene as
that used in the previous task, to simulate a sitnavhere

! —a— listbox ‘

6.5 + —m— ListMap

L — = '

55

45

IS

Mean task time (seconds)

N{
4

Random Revisit

Figure 5. Crossover between random and revisited itemsfor
therevisitation+recency task

found in the first two tasks. In a post-hoc anayshere
was a significant interfacexorigin interaction; ;E26.2,
p<.01l. The interaction is apparent in the cross-@féect
(Figure 5), caused by listboxes outperforming Liafd
with random targets, and the inverse for revistagds.

Effectiveness of the recency caches

The recency cache facilities were only present he t
revisitation+recency condition. To investigate the
effectiveness of the cache facilities in the listband
ListMap interfaces, we re-analysed the data frore th
revisitation condition together with the data frothe
revisitation trials in the revisitation+recency diion. The
analysis used a 2x2x6 design for factamgerface-type
(listbox or ListMap),caching(absent in revisitation, present
in revisitation+recency), anoock

the user knows a number of items well. This sectionAs expected from the prior analyses, there wagmifgiant

examines overall performance in this condition; thext
section examines the effectiveness of the receache
facilities, which were only present in this conaliti

Mean performance with ListMaps (mean 4.1s, sd a3

approximately 17% faster than listboxes (5.0s, $8),1
giving a significant main effect for interface; £9.8,

p<.05. The performance advantage of the ListMap tve

listbox (0.9 seconds) is approximately equal ta thathe

previous task (0.8 seconds); this means that al smmalunt

of randomness in the items to be retrieved doeslisotpt

the overall advantage of the ListMap.

There was less of a performance improvement adrizds
blocks than in the previous task, likely becausgigpants
were already familiar with the revisitation set.efé was
also no significant interfacexblock interactions £&0.3,
p<.9). The slower performance in the first blockyrba due

to the fact that the participants also had to getduto the
new recency-based interface during these triakter dhis
block, performance improved only marginally. Figuée
shows that performance continues roughly on the lin
established in the revisitation task (if we ignbleck one).

We also looked at whether the origin of the itepwvigited
or random) affected performance in similar waysthat

main effect for interface type {[=23.7, p<.01), with
ListMaps (3.5s, sd 1.3) outperforming listboxes6§4.sd
1.2) on revisited data. There was a marginal mecefor
caching (k.:=4.2, p=0.065), with a no-caching mean of
4.2s (sd 1.4) versus caching 3.8s (sd 1.3). Pediocm
across blocks improved significantlys 45=5.1, p<.01.

There was a significant cachingxblock interaction
(Fs55=3.6, p<.01), which is probably caused by relaivel
stable performance across blocks with ListMaps cenh

to variable performance with listboxes (see Fidi)re

We predicted an interfacexcaching interaction, bseave
believed that the ListMap’s static highlighting cécent
items would help users more than the listbox's &dap
contents. However, this prediction was not supbbie the
data, with no significant interaction; F=1.6, p=0.2

Errors

Errors were measured as the total number of incbrre
selections per block divided by the number of tergeer
block. The overall error rate was low (mean 0.@40%9),
ranging from zero to 0.6.

Analysing errors in each of the three conditioren@fom,
revisitation, and revisitation+recency) using 2xB@VAs
for interface-typeand block showed no significant main

6 [listbox
B ListMap
T

=
——

Mean task time (seconds)

2 3 4 5 6 1 2 3 4 5 6

Reuvisiting without a cache Reuvisiting with a cache

on and Recency by block

Figure 6. M ean completion timesfor revisited items only, for
both revisitation task and revisitation+recency task.

effects or interactions. Figure 7 summarizes enaies
across the three conditions for both interface gtype
Although not significant (F1;=4.2, p=0.07), the error rate

for ListMaps when caches are present was more than

double that of the listbox interface. Despite thigh error
rate, participants completed their selections fasfth the
ListMaps, suggesting that the ListMap recency caclas

have promoted hasty commitment to selections. This®

behaviour may have arisen because participants khatv
there was little cost for guessing incorrectly. tRar study
of this result is needed, since in the real wdnkl ¢ost of an
error could be higher (e.g., reposting a dialog).

O listbox
0.07 [M ListMap|
0.06 T

% [

0.03

Mean error rate per trial

0.02

Random

Experimental condition

Figure7. Mean error ratesfor all tasks.

Preferences

After each condition, we asked participants toestahich
of the two interfaces they thought was easier & wdich
they thought was faster, and which they preferregral.
As shown in Table 1, preference was strongly irotavof
the listbox after the random condition: only onerspaé
preferred the ListMap, and only two thought thawés the
faster interface. After the Revisitation conditidvalf of the
participants thought that the ListMap was fastert still
only three preferred it overall. After the revisita+
recency condition, a majority (of seven) thougla listbox
was faster, although people still thought thatligtbox was
easier, and preferred it overall.

At the end of the session, we also asked partitspan
whether they would choose to use a ListMap if théget
were available in the real applications that thegdion a
regular basis. Even though the ListMap was not [@®p
preferred interface during the tasks, nine of thele
participants stated that they would use the ListNtam
real-world application.

DISCUSSION

We draw several main conclusions from the userystud

» For random selection, listboxes outperform ListMaps

» However, real world selection is seldom random, and
when users revisit items, ListMaps outperform listbs;

» Revisitation performance with ListMaps fits mod&s
skill acquisition extremely well, but listboxes dmt —
suggesting that listboxes trap users in ‘beginneden

» Recency caches appear to have little effect wéthdixes.

This supports prior work indicating that adaptivaits

menus do not aid menu selections [7]. With ListMaps

however, the recency cache appears to assisttedidis
although possibly at the cost of higher errors;

» The speed advantage of the ListMap becomes apparent

after participants had revisited items twice;

Users preferred the listbox, although by the laskt a

majority felt that they were faster with the ListpMa

In the next sections, we deal with several issagsed by
the study and by our experiences with the ListM&fe
consider reasons for the performance differencésdan
the ListMap and the listbox, we address severalessn
the design and use of the technique, and we loakags$ to
address the ListMap’s poor preference scores.

Why was the listbox faster for random retrieval?

The listbox had three advantages in the randoncisete
condition. First, participants were far more expeced
with listboxes than they were with ListMaps, andyttwere
all extremely well-practiced at finding items usinge
traditional method. Second, the ListMap providessle
visual search information than does the listboxhat tis,
only three or four letters of the font’'s name weigble in
the map rectangle. As a result, it is more difficalvisually
pick out a particular item, and users often hadaioy out a
horizontal scan with the mouse, watching the popexpto
find the correct item.

Finally, the two-dimensional alphabetic arrangenedie
ListMap appeared to be more difficult for unknowans
than the one-dimensional arrangement of the listiinx a
few occasions, we observed participants going thengy
direction in the ListMap; one participant also sthtthat
they found it more difficult to search for things rows
compared to looking in the vertical list.

Why was the ListMap faster for revisitation?

It seems clear that the speed advantage of théagst
comes from the better support for spatial memorgt th
exists in the map representation. As items aresited,

people start to remember where they are, and ibrhes
easier to get back to them in future. Although ataie
amount of spatial memory could be used in the dist{by
remembering the location of the scroll thumb), the is
much less specific than it was in the ListMap.

Several participants stated that by the end ofthdy, they

that are available at the widget level, ensurirag the maps
are consistent across applications.

What if you use a computer with a different sé¢oofs?

Spatial knowledge from one ListMap will rarely teder to
a different map of the same data type. Howevergetlaee
many examples of specializations that improve perémce

had memorized the locations of many of items in thefor the local user but that are not transferableotoer

working set. They stated that some items were edsie
remember than others: for example, ‘Arial Black’ swa
easier since it was in the top row of items; ‘Golstput’
was more difficult since it was in the middle.

The advantages of using spatial memory as the cgcen
cache become clear in situations where an itero ismger
in the widget's recency set. In the ListMap, evehew
items are no longer highlighted, people remembagity
where they are — that is, people use the highjigimarily
to refine their targeting action, and they are liikeo be
close (based on spatial memory) regardless ofitjtdight.
In contrast, when an item moves out of the listeawache,
the recency support simply fails: there is no waybe
‘close’ if the item is not in the sublist, and a ald new
search is required.

These principles mean that there is a natural lztive in
the ListMap between amount of use and
performance — a desirable state in any interfaeed that
are used often, get remembered better, and so Ileeco
easier to find and faster to retrieve. The pemssteof
spatial memory (as shown by [4]) also suggests that
‘timeout’ period for spatial memory is much longgman
what could be used in an interface-based recerahyeca

A final issue here involves the amount of revigitatthat is
needed before a ListMap will be more effective than
listbox. Based on the data of the revisitation+negetask, a
crossover point can be estimated; if roughly 50%nore of
the selections are revisits, a ListMap should he libtter
display. It should be noted, however, that selestim the
real world are rarely random: if not from a freqtigmsed
working set, they are often from a ‘familiar’ sé#], which
should improve the overall performance of the Ligtu

Questions about ListMap Design and Use

What if two applications use different ListMaps fionts?
The underlying principles of the ListMap are thiti@ms
should be visible, and that
Therefore, any change to the list data or to thaengement
of the map could have negative effects on perfoomanrith
a ListMap. Although undesirable, people can leauitiple

mappings for the same information — for example two

different keyboards, or two different key-bindinfgs cut-

copy-paste. The problems are that learning a secon

mapping is difficult after you already know one datthat
even once the two mappings are both well learnedple
will make mode errors when they forget which magpis
current. We believe that the best way to deal with is to
have standardized ListMaps for common lists (likat$)

retrieval

items should not move.

systems: for example, the way that one person argan
their menus, toolbars, desktop icons, or systerfepraces
often means that they are less effective at somets®s
workstation. Nevertheless, these specializationse ar
valuable, since the majority of most people’s wiarldone

on a single computer that they can tailor to tiparsonal
context. If ListMaps can save a second or more feweary
list selection, and save the frustration of dealiwgh
listboxes, many users will be willing to accept the
narrowness of the solution.

What if you add a new font to your system?

The third type of change that can happen to a lagtM
involves gradual additions over time. We plan tst tdhe
effects of small changes on ListMap retrieval tirhat we
believe that people will be able to adapt quicktyis also
possible to design the map to be more resilierthi@nge:
for example, leaving one column of blank rectanghss
‘expansion slots’ would allow several items to kided
mwithout the need to shift any items to the next.row

What if you want to see the actual appearanceefdahts?
The space-filling representation of the ListMap slo®t
leave enough room to show details such as the sqpE=a
of a font. Although it would be simple to use tlotual font
in the pop-up box, ListMaps are not designed fomzing.

How many ListMaps can people learn?

Our informal tests suggest that people can leauséomore
than one ListMap, and some test users have suatlgssf
learned working sets in three different maps inuatime
hour. These intensive trials are very unlike thegkr-term
and less-frequent use that characterizes real-world
interaction with list data, and so further studyéeded on
this question. However, the range and persistehepatial
memory in everyday life suggests that people vélbble to
learn multiple maps over time.

What about keyboard selection from lists?

Some lists let users type a key to step throughitdras
starting with that letter. We did not include tlzigpability
in our study, since we are interested in situatioiere

there is no keyboard, such as pen-based systems, or

situations where the user works primarily with theuse.
Nevertheless, keyboard input does provide an altertist-
&election mechanism to scrolling the listbox, arallows a
shortcut to a particular region of the list. Weibet that
keyboard bindings would benefit the ListMap as mash
they would the listbox — that is, it would be padsito add
this functionality to the ListMap using a ‘curreselection’
highlight on the map to give feedback as the usspped
through items starting with a particular letter.

Improving preferences for ListMaps 4.
Even though the ListMap was significantly fastenda
participants’ subjective responses recognized ,this¢y
often still preferred the listbox. We believe thtte
ListMap’s lack of popularity is due to the difficul that
people have in finding things for the first time. 5.

This drawback of the ListMap could be reduced
combining the two widgets, allowing users to switidck
and forth between them. Listboxes currently domap the
right mouse button; we are building a prototypegeidthat

lets users switch from ListMap to listbox with agle right 7
click. Users can choose the interface that theyt i@nthe
particular task at hand. In order to help build Hpatial 8

map of revisited items, our prototype switches btackhe
ListMap after a listbox selection, and highlighte titem
that was chosen. We plan to test whether this dual
representation will allow people to gradually switirom

the general-but-limited listbox, to the higher-pemance
ListMap. (The prototype can be downloaded from
web.address.domain/ListMap/).

CONCLUSION

Selection from lists is a frequent task in most ruse
interfaces, and the most common mechanism fortaiis is
the scrolling listbox. Although listboxes are gealethey
do not allow people to capitalize on revisitatiamd they
limit the amount that performance can improve. We
introduced and evaluated an alternate interface likir
selection — the ListMap — that lets people use iapat
memory to improve performance with
experience. A user study showed that ListMaps allow
significantly faster retrieval when users revisgns, and
we estimate that ListMaps will be faster overallentfifty
percent or more of a user’s selections are revisits

In future, we plan to carry out further studies thie
ListMap and the idea of spatial organization. Astimned
above, we will test people’s ability to learn arskumultiple
maps, and will examine the effects of gradual clkeagthe
list data. We plan to extend ListMaps for use oacsp
constrained devices such as mobile phones and Pamks,
we will also explore the idea of spatial shortcutsother
forms: for example, a row of buttons above a tradél
listbox that can be set by the user to stand fah-hi
frequency items in the list. Finally, we will teshe
composite listbox/ListMap widget in a realistic erfiace
setting, and track people’'s usage patterns in geloterm
task setting.

20.

REFERENCES

1. Baddeley, A. (1990). Human
Lawrence Erlbaum Associates.

2. Bederson, B. (2000). Fisheye MenBspc. ACM UIST
200Q 217-225.

3. Cockburn, A., Savage, J., and Wallace, A. (2005).
Tuning and Testing Scrolling Interfaces that
Automatically ZoomProc. ACM CHI 200571-80.

Memory Hove:

10.

11.

increased 14.

16.

17.

18.

19.

21.

Czerwinski, M., van Dantzich, M., Robertson, G.dan
Hoffman, H. (1999) The Contribution of Thumbnail
Image, Mouse-over Text and Spatial Location Memory
to Web Page Retrieval in 3D Viewindroc. IFIP
INTERACT 1999163-170.

Darken, R., and Sibert, J., Wayfinding in Largeksca
Virtual EnvironmentsProc. ACM CHI 1996142-150.
Ehret, B. (2002). Learning where to look: location
learning in graphical user interfacézoc. ACM CHI
2002 211-218.

Findlater, L., and McGrenere, J. (2004). A compmaris
of static, adaptive, and adaptable merigc. ACM
CHI 2004 89-96.

Golledge, R., and Stimson, FSpatial BehaviourNew
York: Guilford Press, 1997.

Greenberg, S., and Witten, I. H. (1993). Supporting
command reuse: Mechanisms for reus®MS, 39(3),
353-390.

Hill, W., Hollan, J. Wroblewski, D. and McCandless,
T., Edit Wear and Read Wed&roc. CHI 1992 3-9.
Jones, W., and Dumais, S., The Spatial Metaphor for
User Interfaces: Experimental Tests of Referenges b
Location versus Nam@&CM TOIS 4, 1986, 42-63.

12. Lynch, K., The Image of the CityCambridge: MIT

Press, 1960.

13. McCrickard, S., and Catrambone, R., (1999). Beyond

the Scrollbar: An Evolution and Evaluation of
Alternative Navigation TechniqueByroc. IEEE Visual
Languages 199970-277

McGrenere, J., and Moore, G. (2000). Are we athia
same "bloat"?Proc. Graphics Interface’00L87-196.

15. Newell, A., and Rosenbloom, P. (1981). Mechanisms

of skill acquisition and the law of practice. In J.
Anderson, ed.Cognitive skills and their acquisition
Hillsdale, NJ: Lawrence Erlbaum, 81-135.

Postma, A., & De Haan, E. (1996). What Was Where?
Memory for Object LocationsQuarterly Journal of
Experimental Psychology9A (1), 178-199.

Robertson, G., Czerwinski, M., Larson, K., Robbins,
D., Thiel, D., and van Dantzich, M., Data Mountain:
Using Spatial Memory for Document Management,
Proc. ACM UIST 1998153-162.

Sears, A., & Shneiderman, B. (1994). Split Menus:
Effectively Using Selection Frequency to Organize
Menus.ACM ToCHI 1(1), 27-51.

Shneiderman, B. Tree Visualization with Tree-majps:
2-D space-filling approachACM Transactions on
Graphics 11, 1, 1992, 92-99.

Skopik, A. and Gutwin, C. (2005). Improving
Revisitation in Fisheye Views with Visit WeaProc.
ACM CHI 2005 771-780.

Smith, R., and Taivalsaari, A. (1999). Generaliaed
Stationary ScrollingProc. ACM UIST 19991-9.

22. Tauscher, L. and Greenberg, S., Revisitation Retter

in World Wide Web Navigation. IfProc. ACM CHI
1997, 398-406.

