
Beyond the LAN: Techniques from Network Games

for Improving Groupware Performance

Jeff Dyck
1
, Carl Gutwin

1
, T.C. Nicholas Graham

2
, and David Pinelle

3

1
Department of Computer Science

University of Saskatchewan
Saskatoon, SK, Canada

2
Department of Computer Science

Queen’s University
Kingston, ON, Canada

3
Department of Computer Science
University of Nevada, Las Vegas

Las Vegas, NV, USA

jeff.dyck@usask.ca, gutwin@cs.usask.ca, graham@cs.queensu.ca, pinelle@cs.unlv.edu

ABSTRACT

Networked games can provide groupware developers with

important lessons in how to deal with real-world networking

issues such as latency, limited bandwidth and packet loss. Games

have similar demands and characteristics to groupware, but unlike

the applications studied by academics, games have provided

production-quality real-time interaction for many years. The

techniques used by games have not traditionally been made

public, but several game networking libraries have recently been

released as open source, providing the opportunity to learn how

games achieve network performance. We examined five game

libraries to find networking techniques that could benefit

groupware; this paper presents the concepts most valuable to

groupware developers, including techniques to deal with limited

bandwidth, reliability, and latency. Some of the techniques have

been previously reported in the networking literature; therefore,

the contribution of this paper is to survey which techniques have

been shown to work, over several years, and then to link these

techniques to quality requirements specific to groupware. By

adopting these techniques, groupware designers can dramatically

improve network performance on the real-world Internet.

Categories and Subject Descriptors

H.5.3 [Information Interfaces and Presentation]: Group and

Organization Interfaces—Computer-supported cooperative work.

General Terms

Performance, Design, Reliability.

Keywords

Networking, QoS, Network Games, Groupware Performance.

1. INTRODUCTION
The goal of real-time distributed groupware is to support

synchronous shared work at a distance. In order to achieve this

goal, groupware must perform well on real-world wide-area

networks like the Internet. Although many systems succeed in the

research lab, network performance becomes a major problem

when they move beyond the LAN and into real-world

deployment. On a local area network, it is easy for any networking

infrastructure to perform well, since bandwidth is plentiful and

packet loss is rare. On the Internet, however, bandwidth is limited

and packet loss is common, and current approaches to networking

for CSCW applications quickly run into severe difficulty.

Networking infrastructures have been improving, with the

widespread presence of high-speed connections to the home.

However, the increase of wireless and mobile platforms means

that it is as important as ever for groupware applications to

operate effectively under limited networking conditions. Poor

networks cause problems for visual communication, coordination

and anticipation of actions, and generally reduce the richness and

quality of real-time collaboration [11,12]. Effective use of limited

networks involves tradeoffs – e.g., between jitter and feedthrough

time – and if real-time groupware is to succeed, it must find ways

to manage these tradeoffs and optimize limited network resources.

There are several disciplines that could be used as a source of

ideas for improving groupware networking (see [4] for a survey):

for example, there is a great deal of research into techniques for

improving video distribution, voice over IP, file transfer,

distributed simulations, and large-scale collaborative virtual

environments. It is not a given, however, that the techniques that

have been introduced in these research communities will be

valuable for real-time groupware. Often, the data used in these

domains has very different characteristics and different quality of

service (QoS) requirements than the messages used in groupware

systems. Networking algorithms for Internet-based applications

are designed to optimize application-specific performance

attributes – for example, minimizing page load time when web

browsing or maximizing throughput when serving video or sound.

In contrast, the performance of real-time groupware is typically

measured in terms of feedback and feedthrough times, and are

characterized by workloads involving frequent, small bursts of

information. Most networking algorithms have not been designed

with the needs of groupware in mind, and are not necessarily

applicable to this kind of distributed system.

There is, however, one area of previous work that has much in

common with real-time groupware – in fact, that is a type of real-

time groupware – and that already has a proven record in efficient

networking. That area is networked multiplayer games: the

network gaming industry has more than a decade of experience in

delivering a high-quality multiplayer experience over the Internet,

with millions of users and thousands of game titles. Games also

have more in common with groupware than other types of

distributed systems: they send short, frequent messages that are

generated from human interaction with the system, and they send

several different types of messages with different requirements for

reliability and latency. A reasonable starting point for improving

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

groupware networking, therefore, is to determine how games send

information, and to evaluate the applicability of these techniques.

In this paper, we present what is to our knowledge the first review

and classification of the networking algorithms used in

multiplayer computer games, and discuss the conditions under

which these algorithms are applicable to the development of real-

time groupware. Learning how games deal with networking is

difficult since game companies do not generally publicize their

techniques. Even previous surveys (e.g., [20]) have primarily been

based on academic research papers. As a result, many of the novel

aspects of game networking have remained, until now,

undocumented in academic literature. Our review was possible

due to the release of the source code for several game networking

libraries. Our results are based on a comprehensive study of these

libraries – TNL, Raknet, Zoidcom, Enet, and Zig – to find out

how they achieve good network performance. Our classification

reveals several networking techniques and principles that have not

been considered before by groupware researchers, and shows how

they can be useful to other types of real-time distributed

groupware. The techniques address the three critical issues that

both games and groupware must deal with on the Internet –

limited bandwidth, reliability, and latency – and are organized

according to the problems they solve.

Our methodology in exploring the techniques was to delve into

the source of the libraries themselves and reverse-engineer the

precise designs of the mechanisms from the code. We then

synthesized the specific implementations into general techniques

used across the libraries. Finally, we classified the techniques

according to the problems they address, allowing us to link the

techniques to specific issues in groupware development.

The networking techniques that we report are not themselves new;

our contribution is their classification and evaluation as

techniques for improving real-time groupware. Game libraries

represent an implicit evaluation of networking techniques: the

techniques that we present here are in the game libraries because

they have been found to work over several iterations of individual

systems. In addition, this implicit evaluation has been carried out

with systems whose communication style, message characteristics,

and QoS requirements are very similar to the types of real-time

groupware that the CSCW community is interested in building.

This paper makes three contributions:

 We collect, synthesize, and present a set of networking

techniques that have demonstrated effectiveness in improving

the network performance of real-time distributed groupware –

techniques which few groupware designers or members of the

CSCW community are familiar with;

 We demonstrate how networking techniques have addressed the

fundamental characteristics of real-time groupware: small

messages, bursty traffic, and diverse QoS requirements. These

examples can be used as starting points for tailoring other

techniques to the needs of real-time distributed systems;

 We identify general principles that underlie the networking

approach of these libraries (limiting bandwidth, degrading

gracefully, and using appropriate reliability and ordering) that

have not previously been discussed in the groupware literature,

and that can be an important part of a framework for improving

groupware performance more generally.

In the remainder of the paper, we describe the state of the art in

networking in academic groupware applications, then present the

techniques and underlying principles drawn from the five libraries

under study, and finally show through a detailed example how

these techniques can be applied to groupware.

2. NETWORKING IN GROUPWARE
Real-time distributed groupware communicates by sending

messages over a network. These messages indicate the actions and

changes made by the people using the system, and can include

awareness messages (e.g., telepointer motion), explicit

communication (e.g., chat, voice), operations and transactions on

the data model, and session events. Awareness messages are the

most common (e.g., since telepointers move frequently), but other

messages types are often more important (e.g., creation or deletion

operations). The way that the underlying groupware system

composes, organizes, and sends these various message types has a

dramatic impact on network performance and on the user’s

experience of the collaborative activity.

One particular approach to networking can be seen in many of the

groupware systems and toolkits that have appeared in the CSCW

community (such as Groupkit [19], Disciple [17], Java Shared

Data Toolkit [2], Collabrary [1], MAUI [15], CoWord and

CoPowerPoint [21], Clock [7], and Habanero [3]). These

‘academic groupware’ systems all use what we call event-driven

TCP, an approach that works reasonably well on a LAN, but

which is completely unsuitable for use on the Internet.

In event-driven TCP, applications trigger events (e.g., keyboard,

mouse, or transaction events) that result in messages to be sent

over the network. Each message is immediately put into a TCP

packet and sent; therefore, packet rate is governed by the

application’s event model. Event-driven TCP is relatively simple

to implement, and performs well when events are rare and

guaranteed delivery is required (e.g., in a chat application). Even

for applications that send awareness messages (such as telepointer

positions) much more frequently, event-driven TCP can work on a

high-bandwidth LAN; however, the approach does not work well

when groupware applications are used over the Internet.

As an example, consider a system that sends text-based or object-

based telepointer update messages using event-driven TCP (e.g.,

Groupkit, MAUI, or Collaborary). Messages will be generated

and sent on mouse interrupts, which produces packet rates

between 30 and 60 updates per second. Each message is

approximately 50 bytes, and is sent in a separate TCP/IP packet,

which adds an additional 40-byte header. This produces an upload

data rate around 32Kbps for every user that the messages need to

be sent to. In a four-user shared whiteboard session with a peer-

to-peer unicast network architecture, this results in an upload

bandwidth requirement of 128Kbps, which is more than many

home Internet packages currently provide.

When bandwidth is not sufficient to carry the telepointer

messages, messages are queued in the sender’s outgoing TCP

buffer, and the motion at the receiver begins to lag behind the

source. Even when there is sufficient bandwidth, however, event-

driven TCP causes performance problems because of its reliability

mechanism: when TCP packets are lost, incoming packets are

blocked at the receiver until the lost packet is retransmitted. TCP

resends lost messages regardless of whether they are still useful to

the application, and the receiver cannot process other messages

(even if they are unrelated to the lost packet) until the resent

message arrives. In a shared whiteboard application, for example,

a lost telepointer update message means that all messages are

blocked, including tool selection and chat messages, until the

telepointer message arrives. Upon arrival, the waiting messages

are processed all at once, causing the telepointer to jump across

the screen in an unnatural way. These network problems make it

difficult for collaborators to follow telepointer motion, to

coordinate actions, and to recognize gestures [12].

Although not all toolkits work in exactly this way, and although

some of these systems offer other networking options (e.g. JSDT

supports the lightweight reliable multicast protocol), the default in

most cases is to use event-driven TCP.

More advanced networking algorithms trade off several metrics

that capture aspects of users’ experience [6]. Feedback time is the

time from a user performing an action to seeing the results of that

action. Feedthrough time is the time from a user performing an

action to other users’ seeing its consequences. Jitter represents

variance in feedback and feedthrough time. Fidelity represents the

degree to which different participants’ views agree. These metrics

often trade off against each other. In broadcast video, for example,

higher feedthrough time is often acceptable in order to reduce

jitter, whereas in teleconferencing, higher jitter is acceptable in

order to gain immediacy of interaction. Groupware applications

often sacrifice short-term fidelity in order to improve feedback

time [21]. By examining networking libraries, we have been able

to determine which algorithms are effective in optimizing one or

more of these quality attributes.

3. STUDY METHODS
The methodology used in this study was to examine open source

game networking libraries to find networking techniques that can

benefit groupware. We began by identifying all of the open source

game networking libraries that are mature, are recommended for

use on game development web sites, and are in use in existing

games. We read through all of the library documentation, reverse

engineered their designs, and inspected source code, noting any

networking techniques that are used. The main tool we used for

reverse engineering and source code inspection was Understand

for C++ (www.scitools.com). This process produced a list of the

networking techniques used in each of the open source libraries.

We then categorized the networking techniques according to the

problems they solve, and evaluated how effective they would be

for groupware based on how well they deal with groupware’s

latency, jitter, and bandwidth problems. This produced a list of

the most important and useful techniques that appear in network

games. We then identified which of the techniques were novel to

groupware based on what had been published previously in the

CSCW community. Finally, we analyzed what game and traffic

factors led to the development of these techniques. The libraries

that we studied were TNL, Raknet, Zoidcom, Enet, and Zig.

3.1 Game networking libraries
TNL (opentnl.sourceforge.net) is derived from the network code

used in the multiplayer games Starsiege: Tribes and Tribes 2.

Tribes is a first person shooter (FPS) game that supports up to 32

users. Unlike most FPS games of its time, Tribes was situated in

an outdoor setting where many users could see each other at once,

and the visibility-based traffic filtering technique used in indoor

FPS games could not be used. This meant that Tribes had to send

unprecedented amounts of information over the 28.8 Kbps

modems it was designed to work with, and as a result, much

network optimization was needed to accommodate its design. The

Tribes network code was further improved for its sequel, Tribes 2,

and after Tribes 2 was completed, the networking code was

packaged by its developers into a stand-alone library called TNL,

which was offered commercially and has been used in many

successful independent and commercially developed games.

Raknet (www.rakkarsoft.com) is a commercially-developed game

networking library that has been used in several commercial

multiplayer game releases since 2002. It is frequently

recommended by game developers on game development message

boards, both for its ease of use and high performance. In 2004, the

source code was released with free commercial licenses.

Zoidcom (www.zoidcom.com) is a full-featured commercial game

networking library that first appeared as a beta release in 2004 and

is still in development. The full source code for the library is not

available, but the C header files are included and it is well-

documented, revealing several performance-enhancing techniques

that are relevant to this study. No commercial games using

Zoidcom have been released, but it has been used in several

independent game projects.

Enet (enet.cubik.org) was developed as part of an open source

first person shooter game called Cube, which was first released in

2002 and has been an active project since then. The Enet library is

offered as a separate, stand-alone networking library and is freely

available for unlimited open source and commercial use. It offers

only low-level services, which include session management,

network monitoring, reliable UDP transport, and flow control.

Although it has fewer features than the other libraries presented

here, Enet’s design is well-considered and carefully tailored for

the needs of games for the features it supports.

Zig (zige.sourceforge.net) first appeared as an open source project

in 2002 and has been an active project since then with regular

releases. It is not yet in popular use and it has comparably fewer

performance-enhancing features than the other game libraries in

this study. It has been included here because of the unique

compression and aggregation techniques it uses.

4. GAME NETWORKING TECHNIQUES
Game network libraries have been designed to minimize some of

the effects of the most critical network problems that affect

usability: limited bandwidth, packet loss, and latency. In this

section, we present the most important methods for solving these

three problems that we found in the game libraries.

Game Networking Techniques

Bandwidth
Conservation

Reliability and
Ordering

Latency
Minimization

Encoding & Compression

Rate and Flow Control

Aggregation

Multiple order
streams

Current-state
data policy

Quickest delivery
policy

Multiple reliability
levels

Message-level
reliability

Figure 1. Summary of game networking techniques

4.1 Bandwidth conservation
Game libraries are designed both to minimize bandwidth usage

and to cope gracefully when bandwidth is constrained. The

bandwidth minimization techniques used in the game libraries fall

under four main categories: encoding and compression, rate and

flow control, aggregation, and priority scheduling.

4.1.1 Encoding and compression
The single most important technique for reducing bandwidth is

reducing message size. Game networking libraries provide

mechanisms for efficient encoding of information, provide lookup

tables for common data, and provide compression techniques for

other types of data.

Minimum bit-length encodings. Several libraries (e.g., Raknet,

Zoidcom, and Zig) provide functions for sending primitive values

with the smallest possible number of bits. This means that

primitives are never sent as strings, that only the primitives are

sent across the network (rather than the field names), and that

each value uses the most efficient representation.

TNL further improves this process by allowing the programmer to

specify the number of bits to use (see Figure 2). For example, an

integer with a range of 0-5 can be sent using 3 bits in TNL; other

libraries would require 8 bits, since a byte is the smallest

representation they support. The TNL method can achieve optimal

bit-length representations, but requires that the application

programmer calculate the number of bits needed for each value.

String lookup tables. Strings are a costly data type to send since

each character requires a full byte. Therefore, a mechanism for

encoding frequent strings as a numeric id can be an effective

optimization. In order to do this, the system must know which

strings will be sent by the application, which depends on runtime

parameters such as usernames, user-configured chat hotkeys, and

tasks that are performed within the game.

TNL uses a string lookup table that is generated dynamically at

runtime. Any strings that are likely to be repeated are added to the

lookup table; these additions are communicated to other clients,

and then the string can be sent as a table entry. This dictionary-

based approach is well-suited to games since they often send the

same strings repeatedly.

RPC lookup tables. Remote procedure calls (RPCs) are a signal

to other clients to execute a method or function. This requires that

the function’s signature and parameter list be sent over the

network, sometimes repeatedly. TNL uses the idea of a lookup

table (as discussed above) to encode RPCs more efficiently.

Information about an RPC is registered with other clients at

runtime as a dictionary entry with a unique numeric ID. RPCs can

then be sent as an ID (that allows lookup of signature and

parameter information) followed by minimum bit-length

representation for the parameter values (see Figure 3).

Lossless compression. For any message that cannot be reduced

using the above techniques, game libraries apply one of several

lossless compression schemes. The type of compression, and the

objects on which it is applied, vary widely across the libraries.

Two common approaches involve compressing strings with

Huffman coding, and compressing entire packet payloads. TNL

and Raknet take the former approach: they apply Huffman coding

on a per-string basis, with a length check to ensure that the

technique is only used when it is likely to perform well.

One optimization introduced by Raknet is maintaining frequency

charts for the occurrences of characters in strings, allowing the

Huffman tree to be rebuilt at any time, which ensures that the

encoding fits the application. This is useful since the character

frequencies in strings may vary based on the application type,

runtime parameters, and the players’ current tasks.

The second approach, seen in Zig, is to compress entire packet

payloads rather than individual strings. This can provide better

performance than per-string compression, since there may be

more repetition in a full packet than in a single string. Zig uses the

BZip2 algorithm, again employing a check to make sure that the

technique is only applied when it will actually result in a shorter

message. Zig also allows programmers to specify the smallest

packet payload to compress, which avoids testing compression

performance on small packets.

 bool b = true; stream->writeFlag(b);

 U32 i = 5; stream->writeInt(i, 3);

 float f = 0.12345; stream->writeFloat(f, 7);

b=true i=5 f=0.12345

0 1 4 11

Figure 2: Sending values with minimal bit lengths in TNL

DECLARE_RPC(hitShip,(StringEntry who, U16 time));

rpc_id =12 who=17 time=94752

0 8 16 24 32

Figure 3. RPCs as sent by TNL. The ID is encoded as 8 bits;

the first parameter is encoded using a string lookup, and the

second parameter is encoded using a minimal representation

Each of these techniques can help in groupware by reducing

latency in cases where bandwidth is constrained. This can in turn

help with feedback and feedthrough time. In deployments where

bandwidth is freely available, these techniques can actually harm

performance, as the processing overhead of reducing message size

can outweigh the saved transmission time.

4.1.2 Rate and flow control
Exceeding bandwidth limits causes severe usability problems

[14]. To prevent this from happening, game networking libraries

make use of three main techniques: bandwidth monitoring, static

rate control, and adaptive flow control. These techniques allow

developers to trade off between fidelity versus feedthrough time,

by eliding updates when bandwidth is scarce.

Bandwidth monitoring. Game libraries provide methods for

monitoring the amount of bandwidth that is being used, so that the

system can make decisions about when to change to lower-traffic

communication strategies. All libraries can report information

such as the current incoming and outgoing available bandwidth

(based on what has been sent over the past second), ping times,

loss rates, packet window sizes, and outgoing queue sizes. No two

libraries provide the exact same information, but each provides

sufficient network information to enable the programmer to build

in well-informed adaptation decisions. TNL further simplifies the

task of adapting to the network by offering virtual methods

specifically for reacting to network resources, that the

programmer can override with their own adaptive logic.

Network rate control. In some cases, game programmers know

beforehand what minimum send rates are acceptable for their

games. TNL allows the programmer to set a rate control policy

that maintains specified minimum and maximum send and receive

rates. The fixed policy uses a credit system where not sending

information earns the sender up to one second worth of send rate

credit. The credit can then be used when there is a burst of

information to be sent at once. The TNL default is to use this

fixed policy with a 96ms packet interval (~10 packets/second).

Object rate control. Libraries that support object replication

(TNL, Raknet, Zig, and Zoidcom), use a separate rate control

technique for objects. The library lets the application programmer

specify a maximum (and minimum with Zoidcom) update rate for

each replicated object. This allows objects with different

characteristics to have different update rates; in addition, each

object’s rate adapts to current network conditions, varying within

the ranges specified by the programmer.

Adaptive flow control. Flow control is a method for limiting

bandwidth by monitoring and adapting to the number of packets

currently in the network (called the window size). This requires

that acknowledgements be sent to inform the sender that a packet

is out of the window. This works well for reliable information

since acknowledgements are being sent anyway; however, games

send much of their traffic unreliably, so they must use alternate

mechanisms for controlling flow. Two main approaches are seen:

 Receiver-driven control. TNL uses an adaptive window size to

control send rate. When packets are received, it increases its

window size up to a preconfigured maximum, and when

packets are lost, the send window is decreased. The send timer

then checks that there is room in the send window and only

sends if there is room to send another packet. Since much of the

game traffic is unreliable, the sender needs feedback on its loss

rates, so TNL periodically sends ACKs solely for the purpose

of adapting the window size.

 Probability-based control. Enet and Raknet do not send any

extra acknowledgment, as this adds traffic. Rather, the window

size (based on acknowledgments for reliable packets) is used as

an indication of how many unreliable packets must be dropped.

Enet uses a ‘drop probability’ that increases as the window size

grows, whereas Raknet simply drops all unreliable messages

when the window is full. In both cases, unreliable messages are

held back to make room for higher-priority reliable messages.

4.1.3 Aggregation
Messages sent by games are often small, and so multiple messages

can often be aggregated into a single packet. This saves space

consumed by packet headers, and reduces the resources required

to process packets along the way. Aggregation works by filling

packets from an outgoing send queue, and messages are

aggregated until one of three conditions is met: the maximum

packet size is reached, all of the messages in the queue are sent, or

the timer signal for sending a packet is received. This policy can

increase latency, since messages are delayed until one of the

conditions is met – but can actually improve feedthrough time

when bandwidth is limited. All of the libraries we studied except

Enet support aggregation, and allow the technique to be applied to

both regular messages and object updates:

Send queues. Outgoing messages are written to a send queue, and

packets are then filled based on the queue contents. The packet is

filled with messages up to the maximum transfer unit (MTU) size

and sent, potentially containing many aggregated messages.

Frames. Updates for replicated objects occur in frames, which

aggregate data for several objects. The frames consist of a subset

of the replicated objects (based on object send rates as described

above); each frame is written to the send buffer and aggregated

with other outgoing traffic. Most libraries automatically handle

framing, but Zig requires the application programmer to define

exactly what is included in each frame. This approach requires

more effort from the developer, but is also more flexible.

4.1.4 Priority
The number of messages in the send queue often exceeds what

can be aggregated into a single packet. This can happen when

there are bursts of messages, when there is limited bandwidth, or

when there are many users in the system. One way that game

libraries deal with these situations is to mark messages with a

priority that indicates the order in which they should be taken

from the send queue. This means that latency-sensitive messages

are sent earlier, and that latency-tolerant messages are sent later

(or even dropped from the send queue if their information

becomes stale). Priority queues provide programmers with a high-

level mechanism for specifying the relative temporal importance

of different messages; e.g., jitter-sensitive message streams such

as voice data may benefit from higher priority. We observed

several different mechanisms for supporting priority.

Numerically assigned and automated. TNL and Zoidcom allow

the programmer to set a numeric priority for each replicated

object. The sending mechanism then sends individual object

updates from highest to lowest priority until bandwidth limits are

reached – at which point low priority unreliable messages are

dropped, and low-priority reliable messages must wait.

Numerically assigned but manual. Raknet’s approach allows

programmers to handle their own priority scheduling. Raknet

supports different priority levels for information, but does not

dictate how the priorities are handled. Instead, Raknet provides

several abstract methods that can optionally be implemented by

the application programmer to define how the application handles

messages of different priority.

Reliable messages first. Enet uses a policy where reliable

messages have priority over unreliable messages. The unreliable

messages are dropped according to an adaptive probability. When

bandwidth is sufficient, all messages are sent; as available

bandwidth decreases, the probability of dropping unreliable

messages increases until an equilibrium state is reached.

RPCs or frames first. Zig provides two priority levels for RPCs.

When priority is high, RPCs are sent before any additional frames,

even if a frame needs to be dropped in order to send the RPC.

Otherwise, Zig waits until the RPC can be aggregated with a game

frame in the same packet. Frames do not have priorities.

Deliver at all costs. TNL also offers a ‘quickest delivery’ policy,

which gives a message top priority – it is sent in every packet until

an acknowledgment is received (see Section 4.3.3).

4.2 Low-cost reliability and ordering
As described above, there are severe performance penalties for

using protocols such as TCP that provide guaranteed message

delivery and ordering. However, game messages have variable

requirements for reliability and ordering, and game libraries

exploit this variability by providing several mechanisms that

provide different levels of service. Games make use of two main

techniques – they offer several different combinations of ordering

and reliability, and they manage these at a message level rather

than at a packet level.

4.2.1 Several levels of reliability
Different game messages require different combinations of

reliability and ordering. In general, highly reliable, totally ordered

messaging provides high fidelity – the receiver experiences the

same operations as the sender. Relaxing reliability and ordering

weakens fidelity, but brings improved feedback time. The game

libraries we examined provide five distinct QoS options for

delivery and ordering:

 Reliable ordered protocols are implemented over UDP by all of

the libraries. The reliable UDP implementations follow the

design of TCP, but have some key differences. For example, all

reliable messages are replied to with acknowledgements,

similar to TCP. However, they use more responsive flow

control algorithms that share logic with unreliable traffic, and

in some cases, they use more elaborate ordering algorithms that

are better suited to the needs of games.

 Reliable unordered messages are guaranteed to arrive, but are

processed in the order that they are received. This is a useful

policy for sending independent discrete events, such as a

spaceship being hit by a bullet.

 The reliable sequenced policy drops all late-arriving reliable

information at the receiver, and also drops packets from the

sender’s resend queue when a later packet is acknowledged.

 Unreliable unordered messages are never resent, and the

unordered designation simply means that messages are

processed in the order in which they arrive.

 Unreliable sequenced messages are not resent, and out-of-order

arrivals are discarded at the receiver.

The most interesting of these policies is the ‘reliable sequenced’

approach. Using this policy, only the last update to a stream of

messages is sent reliably. This policy offers some of the latency

and bandwidth advantages of unreliable delivery, but ensures that

the final update will arrive. This is useful for the bursts of

awareness messages that occur in games and groupware: for

example, a telepointer’s final position is the most important of a

sequence of movement messages.

4.2.2 Message-level reliability
Most real-time distributed media provides reliability support

using a packet protocol. This is fine when most messages have the

same reliability requirements (e.g., VoIP) or when messages are

large (e.g., file transfers). However, when messages are small,

frequent, and have diverse reliability requirements, it is better to

implement reliability at a message level than at a packet level.

All libraries but TNL implement a packet level protocol. This

requires that all messages in the packet be treated equally, and

performance can suffer as a result. For example, consider a packet

that contains two messages: a movement message with an

‘unreliable sequenced’ delivery policy, and a weapon-fire message

with a ‘reliable unordered’ policy. Since one of the messages

requires reliable delivery, packet-level reliability requires that the

system send this packet using a reliable protocol. If the packet was

lost, the packet-level protocol would resend the entire packet

rather than just the weapon fire message.

In contrast, TNL implements message-level reliability. This is

implemented by adding a lightweight reliability header to every

message, and removing the reliability portion of the packet

header. When the packet is lost in the scenario given above,

message-level reliability means that the movement message will

simply be dropped (since delivery is not required), and that the

fire message will be resent with the next packet. This approach is

much more efficient in low bandwidth and lossy conditions.

4.3 Minimizing latency
The priority policies, flow and rate control techniques, and

efficient encodings described above partially address latency

problems. However, three additional causes of latency remain.

The most critical latency problem occurs when ordered messages

are lost, which causes other ordered messages to be blocked at the

receiver while waiting for the missing message to arrive. A second

source of latency occurs when there is not enough bandwidth and

the outgoing message queue backs up. Last, time-critical messages

may be delayed by waiting in the send queue or through packet

loss. This kind of latency negatively impacts both feedthrough

time and jitter. The game libraries we studied have techniques for

reducing latency in all of these scenarios.

4.3.1 Multiple ordered streams
A significant source of latency comes from having to wait for

reliable ordered messages that are lost or late; when this happens,

all subsequent ordered messages are blocked at the receiver.

Games partially address this problem by offering several

unordered policy options, but still, some information must be

ordered and the latency problem can still be significant.

Since there are many message types each with different QoS

requirements, it is common to have independently ordered

messages. For example, ordered chat messages and ordered firing

messages do not need to share an ordering, since the order of

firing and chat are independent. In this case, a lost chat message

should not block firing messages.

Game libraries provide a mechanism for independent ordering; for

example, Raknet provides 32 independent streams that are ordered

relative only to messages on the same stream. Streams are

identified using a channel number, which is specified as a

parameter of each message sent by the sender. The channel

number is encoded in a message-level header, so even though

reliability is controlled at a packet level in Raknet, ordering is at a

message level. This allows messages that are ordered on separate

streams to be aggregated into a single packet.

4.3.2 ‘Current state data’ policy
When there is not enough bandwidth, the outgoing send queue

can become backed up. Additionally, reliable messages can

remain in a resend queue until an acknowledgement is received.

In some cases, the information in these messages can become

stale, and therefore will be useless when sent to the receiver.

The ‘reliable sequenced’ policy used in Raknet partially addresses

the problem of staleness in the reliable queue. Rather than

resending reliable data that is stale, it drops the message from the

resend queue when it receives an acknowledgement that a more

recent update has arrived at the receiver.

However, this policy does not deal with stale information in the

regular send queue. To handle this situation, TNL adds a QoS

level that they call ‘current state data’, which ensures that only the

most recent update is sent. Before a message is sent, a check is

performed to ensure that there is no updated value available. If

there is an updated value, the queued message is dropped and

replaced with the update. This approach ensures that only the

most recent information is ever sent. However, it is important to

note that the source of the queued information must be known, so

this approach lends itself better to data replication tasks than it

does to sending RPCs.

4.3.3 ‘Quickest delivery’ policy
Some messages need to arrive before all other information, either

because they are highly latency-sensitive (e.g., a hit in a first-

person shooter game), or because subsequent messages are

dependent on the earlier message (e.g., a new string table entry).

To support this type of delivery, TNL includes a ‘quickest

delivery’ policy that works by including a message in every

outgoing packet until an acknowledgement is received (Figure 4).

This guarantees the soonest possible delivery of a message – since

in the event of a packet loss or a delayed packet, the message

always appears in the next packet as well. This policy trades off

bandwidth efficiency for minimized latency, since it sends

information redundantly, but the penalty is usually not a large one

since most game messages are small. However, this inefficiency

means that the programmer must not overuse the policy.

m1(QD) m2

m1(QD) m3 m4

ACK(m1)
m1(QD) m5 m6

(Dropped)

m7 m8

Figure 4: Quickest delivery policy sends a message with every

packet until it is acknowledged, guaranteeing first arrival.

5. SHARED WHITEBOARD SCENARIO
The techniques used in game libraries are directly applicable to

real-time groupware. As an example, we consider applying the

techniques described above to a shared whiteboard application.

Through this example, we show how these techniques address the

different issues considered in Section 4: bandwidth optimization,

low-cost reliability and ordering, and latency minimization. This

section describes how the techniques can be applied, and presents

a brief analysis of the result of applying them.

5.1 Shared whiteboard network design
Whiteboard message types. We assume that the shared

whiteboard uses eight message types: chat, telepointer, tool

selection, grab, drag, drop, annotation, and session information.

QoS for each message type. There are different QoS requirements

for each of the message types (summarized in Table 1).

 Chat, annotation, and session information messages should all

be reliable and ordered, but do not require synchronization with

any other information streams, so they are all sent over their

own independent channels. These message types have low

requirements on feedthrough time, and so they can be given a

low priority, which will allow them to be delayed in favor of

more latency-sensitive information.

 Telepointers need low feedback time, but do not need reliable

or ordered delivery. Since telepointers are not dependent on any

other messages, they are sent on their own ordering channel.

 The message types related to drawing operations need to be

ordered with one another, since the effects at the receiver will

be incorrect if they are processed out of order. The most latency

sensitive drawing operations are grab and drop, as these

operations lock the object for modification, and so a quickest

delivery (QD) policy is applied to these message types.

 Drag operations, like telepointers, do not need to be reliable,

although they do need to be ordered with the other drawing

operations, so drag methods are given a sequenced ordering

policy and high priority.

 Tool selections must be ordered within the drawing channel,

and their priority should be high so that the user’s avatar can

promptly reflect tool changes.

 Annotations are designed to be updated in real time, so each

character is sent as it is typed. In order to provide feedthrough

that preserves the sense of typing, these messages are given a

medium priority to reduce latency.

Table 1: QoS requirements for whiteboard message types.

 Reliable Ordering Channel Priority

Chat Yes Ordered 0 Low

Tele No Sequenced 1 High

Tool Yes Ordered 2 High

Grab Yes Ordered 2 QD

Drag No Sequenced 2 High

Drop Yes Ordered 2 QD

Annotation Yes Yes 3 Medium

Session Yes Yes 4 Low

Efficient message encoding. Chat, session information, tool

selection, grabs, and drops are all discrete events and are therefore

best modeled as RPCs. For each of these, we register an RPC and

specify bit lengths for parameters where appropriate. For example,

(x,y) coordinates should be encoded such that their limits do not

exceed the maximum workspace dimensions, and tool selections

should be encoded so that the tool parameter does not exceed the

total number of tools available to the system. Telepointers and

drag operations are modeled as replicated data, and the parameters

are encoded using minimum bit lengths.

String compression. The only strings sent by the system are those

from chat messages and from pasting text strings to annotations. It

is reasonable to assume that the names of users will be frequently

typed in chat, and so usernames are added to the string table when

users join a session. Other strings will be compressed using

adaptive Huffman encoding, where the character frequencies are

tracked and the Huffman tree is rebuilt and sent out periodically.

Adaptive rates. Telepointers and drag operations are streaming

types and are assigned a minimum update frequency of 0 updates

per second and a maximum frequency of 30 updates per second.

The rates will adapt according to the state of the network,

maintaining the maximum rate when network resources are

plentiful and decreasing when resources are constrained. Since

telepointer updates and drag messages will comprise most of the

messages sent by the system, this adaptive frequency range is all

that is necessary to allow the system to degrade gracefully when

network resources are constrained.

No stale information. Telepointer and drag operations are given

TNL’s current state data policy, which ensures that only the most

up-to-date values are sent. This is possible because the telepointer

and drag messages are modeled as replicated data rather than as

RPCs. This policy will both reduce latency and traffic.

5.2 Implications for performance
Using the techniques described above in the implementation of

the shared whiteboard will result in several improvements to the

application’s performance on the real-world Internet.

Reduced bandwidth. Since discrete operations are uncommon

compared to telepointers, and drag operations and telepointers use

the same amount of bandwidth, the maximum bandwidth for a

shared whiteboard can be reasonably approximated by

considering only that used by telepointers. Using the network

design described above, the bandwidth for sending telepointers

would be a small fraction of what is used by event-driven TCP.

Under ideal network conditions, our approach would consume

just over 11Kbps per connected client (UDP/IP header: 28 bytes;

custom packet protocol: 12 bytes; message protocol: 3 bytes;

telepointer payload: 5 bytes; send rate: 30 messages per second, 1

message per packet). This is one-third the bandwidth used by the

event-driven TCP example described in Section 2.

The bandwidth differences are more dramatic when resources

become constrained – in these situations, the flow controller will

begin to aggregate telepointers, resulting in a substantial

bandwidth saving. For example, aggregating 3 telepointers into

each packet would decrease bandwidth usage to 5Kbps per client,

through the reduction in packet headers. In addition, when

bandwidth becomes so constrained that it can no longer support

30 updates per second, the telepointer rate can drop, reducing the

required bandwidth to suit the conditions.

Better handling of time-sensitive information. Telepointer and

drag operations will remain highly responsive, even in lossy

network conditions. Their high priority ensures that they will be

sent out (when there is enough bandwidth) before other operations

that are more latency tolerant. In the event of packet loss,

telepointers will not be blocked waiting for reliable information to

be sent, and the most recent telepointer positions will be used. In

the event of burst loss or temporary network congestion, the most

recent telepointer positions will be sent as soon as possible.

Grab and drop messages will always be sent ahead of any other

types of information, so users will always know as soon as

possible when another user has picked up or let go of an object in

the workspace. This will enable faster turn-taking and fewer

conflicts over objects. By sequencing and ordering all drawing

operations, the operations will appear to work similarly to how

they work on the sender’s machine, regardless of network effects.

Graceful degradation. When bandwidth is constrained, the

system will send packets less frequently and aggregate more

messages into each packet. This adds a small amount of latency,

but maintains smoothness. In extreme conditions, the send rate of

telepointer and drag messages will be reduced, reducing the

smoothness and or accuracy of the streams; but the application

will continue to function, since the awareness messages will be

held back whenever more critical messages are sent.

Better overall usability. The user experience will be greatly

improved compared with an event-driven TCP model. Under ideal

network conditions, this network design will perform the same as

TCP-based implementations. However, as network conditions

worsen, our networking design will continue to support a highly

usable shared whiteboard, with low latency, up-to-date telepointer

and drag positions, and sustainable interaction, even in situations

of extremely low bandwidth.

6. DISCUSSION
This paper presents a large number of networking techniques that

are ready to use for building real-time distributed groupware. The

techniques are presented at a high level, but the concepts are

reasonably simple, and implementation details can be found in the

code of the libraries. The techniques we discuss above are known

to be effective through years of evaluation in games, and the game

networking libraries can serve as high-quality examples of how to

build these techniques.

In the remainder of the paper, we discuss some of the underlying

principles that can be used to guide the design of groupware

network infrastructures more generally, suggest that groupware

developers start using game network libraries, and outline several

areas for future work.

6.1 Underlying principles
Our examination of game networking techniques has identified

several underlying principles that can be used more generally to

guide the design of real-time distributed groupware. Our

experience suggests that groupware developers should be thinking

about limiting bandwidth, using appropriate reliability and

ordering policies, and providing mechanisms for graceful

degradation of service when resources are limited.

6.1.1 Limit bandwidth use
In environments where bandwidth is limited, feedthrough time

and jitter become major problems for groupware usability. These

problems are becoming increasingly important as groupware is

used in mobile settings with low capacity networks. Game

libraries use a variety of techniques for reducing bandwidth

requirements, based on the following principles:

 Use efficient representations: send primitives as minimum bit-

length primitives, encode RPCs numerically, imply field and

parameter names through order, use tables to encode strings,

and avoid sending strings whenever possible.

 Aggregate messages: when bandwidth is insufficient to send

messages as they are generated, aggregate several into each

packet. The small amount of added latency is a reasonable

tradeoff for the increased efficiency.

 Compress: It is useful to always attempt to compress strings or

string-heavy payloads using a lossless techniques If the result is

smaller, send it, and if not, send the original.

 Don’t send stale information: ensure that every message will be

is useful to the receiver, and replace outgoing information with

current values if updates are available.

6.1.2 Degrade gracefully
Applications should be prepared to cope adaptively with lower

levels of network service. Principles from the gaming network

libraries allow application programmers to choose between

degrading jitter, fidelity and feedthrough time:

 Use adaptive flow control: flow control with an adaptive

window size allows timely delivery when bandwidth is

sufficient, and supports aggregation, priority scheduling, and

rate control policies when bandwidth is constrained.

 Determine frequency ranges: minimum and maximum update

frequencies allow the application to reduce traffic flows

appropriately to cope with limited network resources.

 Set priorities: not all messages have the same level of

importance, and careful message prioritization can have large

effects on usability when bandwidth is constrained.

 Provide network information to the application: application

programmers can make good decisions about how to deal with

poor network conditions, and so network monitoring

information should be supplied by the toolkit layer.

6.1.3 Use appropriate reliability and ordering
A major source of latency is due to blocking incoming messages

that are out of order. This scenario needs to be avoided as often as

possible using the following principles:

 Do not order unnecessarily: avoid ordering whenever possible

– reliability requirements do not always imply that ordering is

also required.

 Order independently: both games and groupware send a wide

variety of messages types, and ordered messages can be

grouped into independently ordered streams.

 Use sequenced policies: sequenced policies can be particularly

appropriate for interactive applications because they keep

messages ordered, avoid blocking, and do not send or resend

stale information. Unreliable traffic can be cheaply ordered

with reliable information using an unreliable sequenced policy.

Likewise, reliable sequenced policies are also useful because

they do not block unnecessarily.

6.2 Use game networking libraries
The reason that network gaming libraries have become common is

that it is difficult to build good network code, and the same holds

true for groupware. The prevalence of simplistic networking

models like event-driven TCP is partly a result of the difficulty of

designing and implementing for performance. Therefore, one way

to build better-performing groupware, without requiring that

groupware developers begin writing efficient networking code, is

to start using existing game libraries for groupware. Games and

groupware have many of the same requirements, and game

network libraries meet the needs of groupware applications more

closely than any other network implementations that are available.

Additionally, they are robust and well-tested through real world

use, and are likely to be more efficient to integrate and use than it

is to develop a less efficient, less robust approach from scratch.

Eventually, groupware may have its own networking libraries that

are better-suited to the needs of groupware. Until then, game

networking libraries represent the best low-effort option for

developers who want their applications to be used on the Internet.

6.3 Areas for future work

6.3.1 Improvements to techniques
Many of the techniques presented here offer opportunities for

improvements. In particular, design aspects of some techniques

vary among libraries, showing that determining the best method is

not trivial and more work is required. Also, some of the

techniques require considerable effort from the application

programmer, and this effort can likely be reduced by automating

some of these functions. Areas for future work include:

Automating encoding. Game libraries have made it easier to

customize message encodings, but hand-tailoring still demands

considerable attention from the programmer. New methods are

needed that use the same principles but reduce the load on

developers. Some ideas include adaptively determining minimum

bit-length encodings for primitives, dynamically building string

tables based on frequencies, and simpler programming interfaces

for encoding shared information. Work has begun on this aspect

[10], but more could be done.

Better string compression. Strings in games and groupware are

short, frequent, and most of the redundancy is among strings in

separate messages rather than within individual strings. However,

most lossless techniques for compressing strings assume that the

strings are long and that the redundancy is contained within the

string. Raknet’s approach of dynamically generating new

Huffman trees based on observed runtime character frequencies is

a good example of a compression technique tailored to suit the

characteristics of groupware, but there are certainly more

opportunities available for more efficiently compressing strings.

Adaptive window sizes for groupware. Game networking libraries

use a variety of techniques for adaptively controlling window

sizes. It is unclear which of these techniques is best, and it seems

to depend on the characteristics of the groupware traffic. Further

work is needed to determine how to best control adaptive window

sizes in groupware, paying close attention to the bursty nature of

interactive traffic, variable traffic patterns among applications,

and diverse requirements for reliability among message types. In

particular, further work should be done on the problem of

controlling window sizes for unreliable traffic.

Better aggregation policies. Aggregation in game networking

libraries is driven by the window size only, but since aggregation

adds latency, it should also be a function of the latency

requirements of the information being sent. For example,

aggregation should be avoided when low latency is required, and

aggregation should be enabled when the added latency does not

impact usability. QoS requirements and the network window size

should both be considered by an effective aggregation policy.

Specialized delivery policies. TNL’s quickest delivery and

Raknet’s sequenced ordering are examples of specialized delivery

policies that are well-suited to the needs of games and groupware.

There are undoubtedly more scenarios that are unique to

groupware traffic that could benefit from having policies tailored

for the scenario. At a minimum, policies that address quality of

experience issues beyond timeliness, such as smoothness and

accuracy, are required. Additionally, policies that address the

more complex aspects of collaboration such as degree of interest,

focus and nimbus, and closely-coupled tasks would be beneficial.

6.3.2 Lessons for developing new techniques
Some of the techniques used in games take advantage of the

characteristics of groupware traffic. These same characteristics

can be applied to new groupware networking techniques. The

characteristics that can lead to new techniques are:

Streaming awareness information. Real-time groupware traffic

consists mostly of awareness information. These messages are

bursty, small, and frequent. Game networking libraries have made

use of these characteristics to enhance their aggregation policies,

compression and encoding techniques, and scheduling techniques.

Making use of these same characteristics can drive future

techniques and optimizations to existing techniques.

Messages have diverse QoS requirements. Several of the

techniques used in games are the direct result of observing the

QoS requirements of game messages. The diverse QoS

requirements of groupware can lead to further efficiency gains as

the requirements are better understood and as policies and

techniques are developed to take advantage of the requirements.

7. RELATED WORK
There is a great deal of research from a variety of domains that is

relevant to the techniques, the principles, and the issues presented

here. First, many of the basic ideas for the techniques presented

here have originally appeared in research from the multimedia, IP

telephony, distributed systems, and collaborative virtual

environments research communities. A recent survey of

application layer networking techniques for groupware presents

an overview of techniques from these areas [4]. As mentioned

earlier, these approaches are not always applicable to the specific

needs and data that is seen in groupware, but they provide starting

points for groupware-specific techniques.

Second, other surveys of games and game networking present

additional techniques that can be valuable. In particular, Smed

and colleagues [20] have reviewed a variety of published

academic work in military simulations, collaborative virtual

environments, and networked games. These surveys introduce

other techniques such as dead-reckoning that have been used in

games and distributed simulations, and also mention some of the

network techniques seen here (aggregation and compression,

although the details are different to those of the game libraries).

Finally, a core of groupware researchers are also looking at

performance issues, including performance aspects of groupware

distribution architectures [14,16], scalability [13], QoS [8,9],

generalized compression [10], and interface techniques for hiding

delay [11,12]. This work offers a valuable complement to the

present study; although the performance models are often based

on abstractions of the real network environment, and thus do not

have sufficient detail to capture the issues addressed in our study,

prior research provides a high-level context of toolkits and

distribution architectures in which our techniques can be used.

8. CONCLUSION
This paper presents the first analysis of game networking based on

source code and documentation from real game networking

libraries. The techniques and principles presented here are the

result of significant real-world experience from the gaming

industry in delivering a quality experience to users over the

Internet. These techniques and principles are directly applicable to

real-time distributed groupware, and applying them will

dramatically improve the performance of groupware when used

under constrained network conditions. This work also has

produced new directions for groupware networking research that

are based on the current state of the art in game networking.

Groupware aims to enable collaboration among people who are

located all over the world. To do this, we must find ways of

coping with the limitations of today’s Internet. Network games

have been successfully providing rich, real-time, interactive

experiences to groups of people located all over the world for

many years. By bringing game network techniques and principles

to groupware, we can both improve groupware performance and

make groupware applications feasible across a much wider range

of network situations and conditions.

REFERENCES
[1] Boyle, M., and Greenberg, S., Rapidly Prototyping

Multimedia Groupware. Proc. Conference on Distributed

Multimedia Systems (DMS’05), Banff, Canada, 2005.

[2] Burridge, R. Java Shared Data Toolkit User Guide. Sun

Microsystems, 2004. Available from jsdt.dev.java.net.

[3] Chabert, A., Grossman, E., Jackson, L., Pietrowicz, S., and

Seguin, C., Java Object Sharing in Habanero. CACM, 41(6),

69-76, 1998.

[4] Dyck, J. A Survey of Application-Layer Networking

Techniques for Real-time Distributed Groupware. Technical

Report HCI-TR-06-06, University of Saskatchewan,

available at hci.usask.ca.

[5] Dyck, J., Gutwin, C., Subramanian, S., and Fedak, C., High-

Performance Telepointers, Proc. CSCW 2004, 172-181.

[6] Fletcher, R.D.S., Graham, T.C.N. and Wolfe, C., Plug-

replaceable Consistency Maintenance for Multiplayer

Games, Proc. NetGames 2006, 34-37.

[7] Graham, T.C.N., Urnes, T., and Nejabi, R. Efficient

Distributed Implementation of Semi-Replicated Synchronous

Groupware. Proc. UIST 1996, 1-10.

[8] Graham, T.C.N., Phillips, W.G. and Wolfe, C., Quality

Analysis of Distribution Architectures for Synchronous

Groupware, Proc. CollaborateCom, 2006, 1-9.

[9] Greenhalgh, C., Benford, S., and Reynard, G., A QoS

architecture for collaborative virtual environments, Proc.

ACM Multimedia 1999, 121-130.

[10] Gutwin, C., Fedak, C., Watson, M., Bell, T., and Dyck, J.,

Improving Network Efficiency in Real-Time Groupware with

General Message Compression, Proc. CSCW 2006, 119-128.

[11] Gutwin, C., Benford, S., Dyck, J., Fraser, M., Vaghi, I., and

Greenhalgh, C., Revealing Delay in Collaborative

Environments, Proc. CHI 2004, 503-510.

[12] Gutwin, C. Effects of Network Delay on Group Work in

Shared Workspaces. Proc. ECSCW 2001, 299-318.

[13] Hall, R., Mathur, A., Jahanian, F., Prakash, A., Rasmussen,

C., Corona: A Communication Service for Scalable, Reliable

Group Collaboration Systems, Proc. CSCW 1996, 140-149.

[14] Hayne, S. and Pendergast, M., Experiences with Object-

Oriented Group Support Software Development, IBM

Systems Journal, 34(1), 1995, 96-120.

[15] Hill, J., Gutwin, C., The MAUI Toolkit: Groupware Widgets

for Group Awareness. CSCW, 13 (5-6), 539-571, 2004.

[16] Junuzovic, S, and Dewan, P., Response times in N-user

replicated, centralized, and proximity-based hybrid

collaboration architectures, Proc. CSCW 2006, 129-138.

[17] Marsic, I. Real-Time Collaboration in Heterogeneous

Computing Environments. Proc. ITCC 2000, 222-227.

[18] Reynard, G., Benford, S., Greenhalgh, C., and Heath, C.,

Awareness driven video quality of service in collaborative

virtual environments, Proc. CHI 1998, 464-471.

[19] Roseman, M., and Greenberg, S., Building Real Time

Groupware with GroupKit, A Groupware Toolkit, ToCHI,

3(1), 66-106, 1996.

[20] Smed, J., Kaukoranta, K., and Hakonen, H. Aspects of

Networking in Multiplayer Computer Games, The Electronic

Library, 20(2), 2002, 87–97.

[21] Xia, S., Sun, D., Sun, C., Chen, D., Shen, H., Leveraging

single-user applications for multi-user collaboration: the

CoWord approach. Proc. CSCW 2004, 162-171.

