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ABSTRACT 

Networked games can provide groupware developers with 

important lessons in how to deal with real-world networking 

issues such as latency, limited bandwidth and packet loss. Games 

have similar demands and characteristics to groupware, but unlike 

the applications studied by academics, games have provided 

production-quality real-time interaction for many years. The 

techniques used by games have not traditionally been made 

public, but several game networking libraries have recently been 

released as open source, providing the opportunity to learn how 

games achieve network performance. We examined five game 

libraries to find networking techniques that could benefit 

groupware; this paper presents the concepts most valuable to 

groupware developers, including techniques to deal with limited 

bandwidth, reliability, and latency. Some of the techniques have 

been previously reported in the networking literature; therefore, 

the contribution of this paper is to survey which techniques have 

been shown to work, over several years, and then to link these 

techniques to quality requirements specific to groupware. By 

adopting these techniques, groupware designers can dramatically 

improve network performance on the real-world Internet. 

Categories and Subject Descriptors 

H.5.3 [Information Interfaces and Presentation]: Group and 

Organization Interfaces—Computer-supported cooperative work. 

General Terms 

Performance, Design, Reliability. 

Keywords 

Networking, QoS, Network Games, Groupware Performance. 

1. INTRODUCTION 
The goal of real-time distributed groupware is to support 

synchronous shared work at a distance. In order to achieve this 

goal, groupware must perform well on real-world wide-area 

networks like the Internet. Although many systems succeed in the 

research lab, network performance becomes a major problem 

when they move beyond the LAN and into real-world 

deployment. On a local area network, it is easy for any networking 

infrastructure to perform well, since bandwidth is plentiful and 

packet loss is rare. On the Internet, however, bandwidth is limited 

and packet loss is common, and current approaches to networking 

for CSCW applications quickly run into severe difficulty. 

Networking infrastructures have been improving, with the 

widespread presence of high-speed connections to the home. 

However, the increase of wireless and mobile platforms means 

that it is as important as ever for groupware applications to 

operate effectively under limited networking conditions. Poor 

networks cause problems for visual communication, coordination 

and anticipation of actions, and generally reduce the richness and 

quality of real-time collaboration [11,12]. Effective use of limited 

networks involves tradeoffs – e.g., between jitter and feedthrough 

time – and if real-time groupware is to succeed, it must find ways 

to manage these tradeoffs and optimize limited network resources.  

There are several disciplines that could be used as a source of 

ideas for improving groupware networking (see [4] for a survey): 

for example, there is a great deal of research into techniques for 

improving video distribution, voice over IP, file transfer, 

distributed simulations, and large-scale collaborative virtual 

environments. It is not a given, however, that the techniques that 

have been introduced in these research communities will be 

valuable for real-time groupware. Often, the data used in these 

domains has very different characteristics and different quality of 

service (QoS) requirements than the messages used in groupware 

systems. Networking algorithms for Internet-based applications 

are designed to optimize application-specific performance 

attributes – for example, minimizing page load time when web 

browsing or maximizing throughput when serving video or sound. 

In contrast, the performance of real-time groupware is typically 

measured in terms of feedback and feedthrough times, and are 

characterized by workloads involving frequent, small bursts of 

information. Most networking algorithms have not been designed 

with the needs of groupware in mind, and are not necessarily 

applicable to this kind of distributed system. 

There is, however, one area of previous work that has much in 

common with real-time groupware – in fact, that is a type of real-

time groupware – and that already has a proven record in efficient 

networking. That area is networked multiplayer games: the 

network gaming industry has more than a decade of experience in 

delivering a high-quality multiplayer experience over the Internet, 

with millions of users and thousands of game titles. Games also 

have more in common with groupware than other types of 

distributed systems: they send short, frequent messages that are 

generated from human interaction with the system, and they send 

several different types of messages with different requirements for 

reliability and latency. A reasonable starting point for improving 
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groupware networking, therefore, is to determine how games send 

information, and to evaluate the applicability of these techniques.  

In this paper, we present what is to our knowledge the first review 

and classification of the networking algorithms used in 

multiplayer computer games, and discuss the conditions under 

which these algorithms are applicable to the development of real-

time groupware.  Learning how games deal with networking is 

difficult since game companies do not generally publicize their 

techniques. Even previous surveys (e.g., [20]) have primarily been 

based on academic research papers. As a result, many of the novel 

aspects of game networking have remained, until now, 

undocumented in academic literature. Our review was possible 

due to the release of the source code for several game networking 

libraries. Our results are based on a comprehensive study of these 

libraries – TNL, Raknet, Zoidcom, Enet, and Zig – to find out 

how they achieve good network performance. Our classification 

reveals several networking techniques and principles that have not 

been considered before by groupware researchers, and shows how 

they can be useful to other types of real-time distributed 

groupware. The techniques address the three critical issues that 

both games and groupware must deal with on the Internet – 

limited bandwidth, reliability, and latency – and are organized 

according to the problems they solve. 

Our methodology in exploring the techniques was to delve into 

the source of the libraries themselves and reverse-engineer the 

precise designs of the mechanisms from the code. We then 

synthesized the specific implementations into general techniques 

used across the libraries. Finally, we classified the techniques 

according to the problems they address, allowing us to link the 

techniques to specific issues in groupware development. 

The networking techniques that we report are not themselves new; 

our contribution is their classification and evaluation as 

techniques for improving real-time groupware. Game libraries 

represent an implicit evaluation of networking techniques: the 

techniques that we present here are in the game libraries because 

they have been found to work over several iterations of individual 

systems. In addition, this implicit evaluation has been carried out 

with systems whose communication style, message characteristics, 

and QoS requirements are very similar to the types of real-time 

groupware that the CSCW community is interested in building.  

This paper makes three contributions: 

 We collect, synthesize, and present a set of networking 

techniques that have demonstrated effectiveness in improving 

the network performance of real-time distributed groupware – 

techniques which few groupware designers or members of the 

CSCW community are familiar with; 

 We demonstrate how networking techniques have addressed the 

fundamental characteristics of real-time groupware: small 

messages, bursty traffic, and diverse QoS requirements. These 

examples can be used as starting points for tailoring other 

techniques to the needs of real-time distributed systems; 

 We identify general principles that underlie the networking 

approach of these libraries (limiting bandwidth, degrading 

gracefully, and using appropriate reliability and ordering) that 

have not previously been discussed in the groupware literature, 

and that can be an important part of a framework for improving 

groupware performance more generally.  

In the remainder of the paper, we describe the state of the art in 

networking in academic groupware applications, then present the 

techniques and underlying principles drawn from the five libraries 

under study, and finally show through a detailed example how 

these techniques can be applied to groupware. 

2. NETWORKING IN GROUPWARE 
Real-time distributed groupware communicates by sending 

messages over a network. These messages indicate the actions and 

changes made by the people using the system, and can include 

awareness messages (e.g., telepointer motion), explicit 

communication (e.g., chat, voice), operations and transactions on 

the data model, and session events. Awareness messages are the 

most common (e.g., since telepointers move frequently), but other 

messages types are often more important (e.g., creation or deletion 

operations). The way that the underlying groupware system 

composes, organizes, and sends these various message types has a 

dramatic impact on network performance and on the user’s 

experience of the collaborative activity. 

One particular approach to networking can be seen in many of the 

groupware systems and toolkits that have appeared in the CSCW 

community (such as Groupkit [19], Disciple [17], Java Shared 

Data Toolkit [2], Collabrary [1], MAUI [15], CoWord and 

CoPowerPoint [21], Clock [7], and Habanero [3]). These 

‘academic groupware’ systems all use what we call event-driven 

TCP, an approach that works reasonably well on a LAN, but 

which is completely unsuitable for use on the Internet.  

In event-driven TCP, applications trigger events (e.g., keyboard, 

mouse, or transaction events) that result in messages to be sent 

over the network. Each message is immediately put into a TCP 

packet and sent; therefore, packet rate is governed by the 

application’s event model. Event-driven TCP is relatively simple 

to implement, and performs well when events are rare and 

guaranteed delivery is required (e.g., in a chat application). Even 

for applications that send awareness messages (such as telepointer 

positions) much more frequently, event-driven TCP can work on a 

high-bandwidth LAN; however, the approach does not work well 

when groupware applications are used over the Internet. 

As an example, consider a system that sends text-based or object-

based telepointer update messages using event-driven TCP (e.g., 

Groupkit, MAUI, or Collaborary). Messages will be generated 

and sent on mouse interrupts, which produces packet rates 

between 30 and 60 updates per second. Each message is 

approximately 50 bytes, and is sent in a separate TCP/IP packet, 

which adds an additional 40-byte header. This produces an upload 

data rate around 32Kbps for every user that the messages need to 

be sent to. In a four-user shared whiteboard session with a peer-

to-peer unicast network architecture, this results in an upload 

bandwidth requirement of 128Kbps, which is more than many 

home Internet packages currently provide.  

When bandwidth is not sufficient to carry the telepointer 

messages, messages are queued in the sender’s outgoing TCP 

buffer, and the motion at the receiver begins to lag behind the 

source. Even when there is sufficient bandwidth, however, event-

driven TCP causes performance problems because of its reliability 

mechanism: when TCP packets are lost, incoming packets are 

blocked at the receiver until the lost packet is retransmitted. TCP 

resends lost messages regardless of whether they are still useful to 

the application, and the receiver cannot process other messages 

(even if they are unrelated to the lost packet) until the resent 

message arrives. In a shared whiteboard application, for example, 



a lost telepointer update message means that all messages are 

blocked, including tool selection and chat messages, until the 

telepointer message arrives. Upon arrival, the waiting messages 

are processed all at once, causing the telepointer to jump across 

the screen in an unnatural way. These network problems make it 

difficult for collaborators to follow telepointer motion, to 

coordinate actions, and to recognize gestures [12].  

Although not all toolkits work in exactly this way, and although 

some of these systems offer other networking options (e.g. JSDT 

supports the lightweight reliable multicast protocol), the default in 

most cases is to use event-driven TCP.  

More advanced networking algorithms trade off several metrics 

that capture aspects of users’ experience [6]. Feedback time is the 

time from a user performing an action to seeing the results of that 

action.  Feedthrough time is the time from a user performing an 

action to other users’ seeing its consequences. Jitter represents 

variance in feedback and feedthrough time. Fidelity represents the 

degree to which different participants’ views agree. These metrics 

often trade off against each other. In broadcast video, for example, 

higher feedthrough time is often acceptable in order to reduce 

jitter, whereas in teleconferencing, higher jitter is acceptable in 

order to gain immediacy of interaction. Groupware applications 

often sacrifice short-term fidelity in order to improve feedback 

time [21]. By examining networking libraries, we have been able 

to determine which algorithms are effective in optimizing one or 

more of these quality attributes. 

3. STUDY METHODS  
The methodology used in this study was to examine open source 

game networking libraries to find networking techniques that can 

benefit groupware. We began by identifying all of the open source 

game networking libraries that are mature, are recommended for 

use on game development web sites, and are in use in existing 

games. We read through all of the library documentation, reverse 

engineered their designs, and inspected source code, noting any 

networking techniques that are used. The main tool we used for 

reverse engineering and source code inspection was Understand 

for C++ (www.scitools.com). This process produced a list of the 

networking techniques used in each of the open source libraries. 

We then categorized the networking techniques according to the 

problems they solve, and evaluated how effective they would be 

for groupware based on how well they deal with groupware’s 

latency, jitter, and bandwidth problems. This produced a list of 

the most important and useful techniques that appear in network 

games. We then identified which of the techniques were novel to 

groupware based on what had been published previously in the 

CSCW community. Finally, we analyzed what game and traffic 

factors led to the development of these techniques. The libraries 

that we studied were TNL, Raknet, Zoidcom, Enet, and Zig. 

3.1 Game networking libraries 
TNL (opentnl.sourceforge.net) is derived from the network code 

used in the multiplayer games Starsiege: Tribes and Tribes 2. 

Tribes is a first person shooter (FPS) game that supports up to 32 

users. Unlike most FPS games of its time, Tribes was situated in 

an outdoor setting where many users could see each other at once, 

and the visibility-based traffic filtering technique used in indoor 

FPS games could not be used. This meant that Tribes had to send 

unprecedented amounts of information over the 28.8 Kbps 

modems it was designed to work with, and as a result, much 

network optimization was needed to accommodate its design. The 

Tribes network code was further improved for its sequel, Tribes 2, 

and after Tribes 2 was completed, the networking code was 

packaged by its developers into a stand-alone library called TNL, 

which was offered commercially and has been used in many 

successful independent and commercially developed games. 

Raknet (www.rakkarsoft.com) is a commercially-developed game 

networking library that has been used in several commercial 

multiplayer game releases since 2002. It is frequently 

recommended by game developers on game development message 

boards, both for its ease of use and high performance. In 2004, the 

source code was released with free commercial licenses. 

Zoidcom (www.zoidcom.com) is a full-featured commercial game 

networking library that first appeared as a beta release in 2004 and 

is still in development. The full source code for the library is not 

available, but the C header files are included and it is well-

documented, revealing several performance-enhancing techniques 

that are relevant to this study. No commercial games using 

Zoidcom have been released, but it has been used in several 

independent game projects. 

Enet (enet.cubik.org) was developed as part of an open source 

first person shooter game called Cube, which was first released in 

2002 and has been an active project since then. The Enet library is 

offered as a separate, stand-alone networking library and is freely 

available for unlimited open source and commercial use. It offers 

only low-level services, which include session management, 

network monitoring, reliable UDP transport, and flow control. 

Although it has fewer features than the other libraries presented 

here, Enet’s design is well-considered and carefully tailored for 

the needs of games for the features it supports. 

Zig (zige.sourceforge.net) first appeared as an open source project 

in 2002 and has been an active project since then with regular 

releases. It is not yet in popular use and it has comparably fewer 

performance-enhancing features than the other game libraries in 

this study. It has been included here because of the unique 

compression and aggregation techniques it uses. 

4. GAME NETWORKING TECHNIQUES 
Game network libraries have been designed to minimize some of 

the effects of the most critical network problems that affect 

usability: limited bandwidth, packet loss, and latency. In this 

section, we present the most important methods for solving these 

three problems that we found in the game libraries. 

Game Networking Techniques

Bandwidth 
Conservation

Reliability and 
Ordering

Latency 
Minimization

Encoding  & Compression

Rate and Flow Control

Aggregation

Multiple order 
streams

Current-state 
data policy

Quickest delivery 
policy

Multiple reliability 
levels

Message-level 
reliability

 

Figure 1. Summary of game networking techniques 



4.1 Bandwidth conservation 
Game libraries are designed both to minimize bandwidth usage 

and to cope gracefully when bandwidth is constrained. The 

bandwidth minimization techniques used in the game libraries fall 

under four main categories: encoding and compression, rate and 

flow control, aggregation, and priority scheduling.  

4.1.1 Encoding and compression 
The single most important technique for reducing bandwidth is 

reducing message size. Game networking libraries provide 

mechanisms for efficient encoding of information, provide lookup 

tables for common data, and provide compression techniques for 

other types of data.  

Minimum bit-length encodings. Several libraries (e.g., Raknet, 

Zoidcom, and Zig) provide functions for sending primitive values 

with the smallest possible number of bits. This means that 

primitives are never sent as strings, that only the primitives are 

sent across the network (rather than the field names), and that 

each value uses the most efficient representation.  

TNL further improves this process by allowing the programmer to 

specify the number of bits to use (see Figure 2). For example, an 

integer with a range of 0-5 can be sent using 3 bits in TNL; other 

libraries would require 8 bits, since a byte is the smallest 

representation they support. The TNL method can achieve optimal 

bit-length representations, but requires that the application 

programmer calculate the number of bits needed for each value.  

String lookup tables. Strings are a costly data type to send since 

each character requires a full byte. Therefore, a mechanism for 

encoding frequent strings as a numeric id can be an effective 

optimization. In order to do this, the system must know which 

strings will be sent by the application, which depends on runtime 

parameters such as usernames, user-configured chat hotkeys, and 

tasks that are performed within the game. 

TNL uses a string lookup table that is generated dynamically at 

runtime. Any strings that are likely to be repeated are added to the 

lookup table; these additions are communicated to other clients, 

and then the string can be sent as a table entry. This dictionary-

based approach is well-suited to games since they often send the 

same strings repeatedly. 

RPC lookup tables. Remote procedure calls (RPCs) are a signal 

to other clients to execute a method or function. This requires that 

the function’s signature and parameter list be sent over the 

network, sometimes repeatedly. TNL uses the idea of a lookup 

table (as discussed above) to encode RPCs more efficiently. 

Information about an RPC is registered with other clients at 

runtime as a dictionary entry with a unique numeric ID. RPCs can 

then be sent as an ID (that allows lookup of signature and 

parameter information) followed by minimum bit-length 

representation for the parameter values (see Figure 3).  

Lossless compression. For any message that cannot be reduced 

using the above techniques, game libraries apply one of several 

lossless compression schemes. The type of compression, and the 

objects on which it is applied, vary widely across the libraries.  

Two common approaches involve compressing strings with 

Huffman coding, and compressing entire packet payloads. TNL 

and Raknet take the former approach: they apply Huffman coding 

on a per-string basis, with a length check to ensure that the 

technique is only used when it is likely to perform well.  

One optimization introduced by Raknet is maintaining frequency 

charts for the occurrences of characters in strings, allowing the 

Huffman tree to be rebuilt at any time, which ensures that the 

encoding fits the application. This is useful since the character 

frequencies in strings may vary based on the application type, 

runtime parameters, and the players’ current tasks.  

The second approach, seen in Zig, is to compress entire packet 

payloads rather than individual strings. This can provide better 

performance than per-string compression, since there may be 

more repetition in a full packet than in a single string. Zig uses the 

BZip2 algorithm, again employing a check to make sure that the 

technique is only applied when it will actually result in a shorter 

message. Zig also allows programmers to specify the smallest 

packet payload to compress, which avoids testing compression 

performance on small packets. 

 bool b = true;        stream->writeFlag(b); 

 U32 i = 5;            stream->writeInt(i, 3); 

 float f = 0.12345;    stream->writeFloat(f, 7); 

b=true     i=5                  f=0.12345

0    1             4                                11

 

Figure 2: Sending values with minimal bit lengths in TNL 

DECLARE_RPC(hitShip,(StringEntry who, U16 time)); 

rpc_id =12  who=17       time=94752

0         8       16        24       32

 
Figure 3. RPCs as sent by TNL. The ID is encoded as 8 bits; 

the first parameter is encoded using a string lookup, and the 

second parameter is encoded using a minimal representation 

Each of these techniques can help in groupware by reducing 

latency in cases where bandwidth is constrained. This can in turn 

help with feedback and feedthrough time. In deployments where 

bandwidth is freely available, these techniques can actually harm 

performance, as the processing overhead of reducing message size 

can outweigh the saved transmission time. 

4.1.2 Rate and flow control 
Exceeding bandwidth limits causes severe usability problems 

[14]. To prevent this from happening, game networking libraries 

make use of three main techniques: bandwidth monitoring, static 

rate control, and adaptive flow control. These techniques allow 

developers to trade off between fidelity versus feedthrough time, 

by eliding updates when bandwidth is scarce. 

Bandwidth monitoring. Game libraries provide methods for 

monitoring the amount of bandwidth that is being used, so that the 

system can make decisions about when to change to lower-traffic 

communication strategies. All libraries can report information 

such as the current incoming and outgoing available bandwidth 

(based on what has been sent over the past second), ping times, 

loss rates, packet window sizes, and outgoing queue sizes. No two 

libraries provide the exact same information, but each provides 

sufficient network information to enable the programmer to build 

in well-informed adaptation decisions. TNL further simplifies the 

task of adapting to the network by offering virtual methods 

specifically for reacting to network resources, that the 

programmer can override with their own adaptive logic. 



Network rate control. In some cases, game programmers know 

beforehand what minimum send rates are acceptable for their 

games. TNL allows the programmer to set a rate control policy 

that maintains specified minimum and maximum send and receive 

rates. The fixed policy uses a credit system where not sending 

information earns the sender up to one second worth of send rate 

credit. The credit can then be used when there is a burst of 

information to be sent at once. The TNL default is to use this 

fixed policy with a 96ms packet interval (~10 packets/second). 

Object rate control. Libraries that support object replication 

(TNL, Raknet, Zig, and Zoidcom), use a separate rate control 

technique for objects. The library lets the application programmer 

specify a maximum (and minimum with Zoidcom) update rate for 

each replicated object. This allows objects with different 

characteristics to have different update rates; in addition, each 

object’s rate adapts to current network conditions, varying within 

the ranges specified by the programmer. 

Adaptive flow control. Flow control is a method for limiting 

bandwidth by  monitoring and adapting to the number of packets 

currently in the network (called the window size). This requires 

that acknowledgements be sent to inform the sender that a packet 

is out of the window. This works well for reliable information 

since acknowledgements are being sent anyway; however, games 

send much of their traffic unreliably, so they must use alternate 

mechanisms for controlling flow. Two main approaches are seen:  

 Receiver-driven control. TNL uses an adaptive window size to 

control send rate. When packets are received, it increases its 

window size up to a preconfigured maximum, and when 

packets are lost, the send window is decreased. The send timer 

then checks that there is room in the send window and only 

sends if there is room to send another packet. Since much of the 

game traffic is unreliable, the sender needs feedback on its loss 

rates, so TNL periodically sends ACKs solely for the purpose 

of adapting the window size.  

 Probability-based control. Enet and Raknet do not send any 

extra acknowledgment, as this adds traffic. Rather, the window 

size (based on acknowledgments for reliable packets) is used as 

an indication of how many unreliable packets must be dropped. 

Enet uses a ‘drop probability’ that increases as the window size 

grows, whereas Raknet simply drops all unreliable messages 

when the window is full. In both cases, unreliable messages are 

held back to make room for higher-priority reliable messages. 

4.1.3 Aggregation 
Messages sent by games are often small, and so multiple messages 

can often be aggregated into a single packet. This saves space 

consumed by packet headers, and reduces the resources required 

to process packets along the way. Aggregation works by filling 

packets from an outgoing send queue, and messages are 

aggregated until one of three conditions is met: the maximum 

packet size is reached, all of the messages in the queue are sent, or 

the timer signal for sending a packet is received. This policy can 

increase latency, since messages are delayed until one of the 

conditions is met – but can actually improve feedthrough time 

when bandwidth is limited. All of the libraries we studied except 

Enet support aggregation, and allow the technique to be applied to 

both regular messages and object updates: 

Send queues. Outgoing messages are written to a send queue, and 

packets are then filled based on the queue contents. The packet is 

filled with messages up to the maximum transfer unit (MTU) size 

and sent, potentially containing many aggregated messages. 

Frames. Updates for replicated objects occur in frames, which 

aggregate data for several objects. The frames consist of a subset 

of the replicated objects (based on object send rates as described 

above); each frame is written to the send buffer and aggregated 

with other outgoing traffic. Most libraries automatically handle 

framing, but Zig requires the application programmer to define 

exactly what is included in each frame. This approach requires 

more effort from the developer, but is also more flexible. 

4.1.4 Priority 
The number of messages in the send queue often exceeds what 

can be aggregated into a single packet. This can happen when 

there are bursts of messages, when there is limited bandwidth, or 

when there are many users in the system. One way that game 

libraries deal with these situations is to mark messages with a 

priority that indicates the order in which they should be taken 

from the send queue. This means that latency-sensitive messages 

are sent earlier, and that latency-tolerant messages are sent later 

(or even dropped from the send queue if their information 

becomes stale). Priority queues provide programmers with a high-

level mechanism for specifying the relative temporal importance 

of different messages; e.g., jitter-sensitive message streams such 

as voice data may benefit from higher priority. We observed 

several different mechanisms for supporting priority. 

Numerically assigned and automated. TNL and Zoidcom allow 

the programmer to set a numeric priority for each replicated 

object. The sending mechanism then sends individual object 

updates from highest to lowest priority until bandwidth limits are 

reached – at which point low priority unreliable messages are 

dropped, and low-priority reliable messages must wait. 

Numerically assigned but manual. Raknet’s approach allows 

programmers to handle their own priority scheduling. Raknet 

supports different priority levels for information, but does not 

dictate how the priorities are handled. Instead, Raknet provides 

several abstract methods that can optionally be implemented by 

the application programmer to define how the application handles 

messages of different priority. 

Reliable messages first. Enet uses a policy where reliable 

messages have priority over unreliable messages. The unreliable 

messages are dropped according to an adaptive probability. When 

bandwidth is sufficient, all messages are sent; as available 

bandwidth decreases, the probability of dropping unreliable 

messages increases until an equilibrium state is reached. 

RPCs or frames first. Zig provides two priority levels for RPCs. 

When priority is high, RPCs are sent before any additional frames, 

even if a frame needs to be dropped in order to send the RPC. 

Otherwise, Zig waits until the RPC can be aggregated with a game 

frame in the same packet. Frames do not have priorities. 

Deliver at all costs. TNL also offers a ‘quickest delivery’ policy, 

which gives a message top priority – it is sent in every packet until 

an acknowledgment is received (see Section 4.3.3). 

4.2 Low-cost reliability and ordering 
As described above, there are severe performance penalties for 

using protocols such as TCP that provide guaranteed message 

delivery and ordering. However, game messages have variable 

requirements for reliability and ordering, and game libraries 



exploit this variability by providing several mechanisms that 

provide different levels of service. Games make use of two main 

techniques – they offer several different combinations of ordering 

and reliability, and they manage these at a message level rather 

than at a packet level. 

4.2.1 Several levels of reliability 
Different game messages require different combinations of 

reliability and ordering. In general, highly reliable, totally ordered 

messaging provides high fidelity – the receiver experiences the 

same operations as the sender. Relaxing reliability and ordering 

weakens fidelity, but brings improved feedback time. The game 

libraries we examined provide five distinct QoS options for 

delivery and ordering: 

 Reliable ordered protocols are implemented over UDP by all of 

the libraries. The reliable UDP implementations follow the 

design of TCP, but have some key differences. For example, all 

reliable messages are replied to with acknowledgements, 

similar to TCP. However, they use more responsive flow 

control algorithms that share logic with unreliable traffic, and 

in some cases, they use more elaborate ordering algorithms that 

are better suited to the needs of games. 

 Reliable unordered messages are guaranteed to arrive, but are 

processed in the order that they are received. This is a useful 

policy for sending independent discrete events, such as a 

spaceship being hit by a bullet.  

 The reliable sequenced policy drops all late-arriving reliable 

information at the receiver, and also drops packets from the 

sender’s resend queue when a later packet is acknowledged.  

 Unreliable unordered messages are never resent, and the 

unordered designation simply means that messages are 

processed in the order in which they arrive.  

 Unreliable sequenced messages are not resent, and out-of-order 

arrivals are discarded at the receiver.  

The most interesting of these policies is the ‘reliable sequenced’ 

approach. Using this policy, only the last update to a stream of 

messages is sent reliably. This policy offers some of the latency 

and bandwidth advantages of unreliable delivery, but ensures that 

the final update will arrive. This is useful for the bursts of 

awareness messages that occur in games and groupware: for 

example, a telepointer’s final position is the most important of a 

sequence of movement messages. 

4.2.2 Message-level reliability 
Most real-time distributed media provides reliability support 

using a packet protocol. This is fine when most messages have the 

same reliability requirements (e.g., VoIP) or when messages are 

large (e.g., file transfers). However, when messages are small, 

frequent, and have diverse reliability requirements, it is better to 

implement reliability at a message level than at a packet level. 

All libraries but TNL implement a packet level protocol. This 

requires that all messages in the packet be treated equally, and 

performance can suffer as a result. For example, consider a packet 

that contains two messages: a movement message with an 

‘unreliable sequenced’ delivery policy, and a weapon-fire message 

with a ‘reliable unordered’ policy. Since one of the messages 

requires reliable delivery, packet-level reliability requires that the 

system send this packet using a reliable protocol. If the packet was 

lost, the packet-level protocol would resend the entire packet 

rather than just the weapon fire message. 

In contrast, TNL implements message-level reliability. This is 

implemented by adding a lightweight reliability header to every 

message, and removing the reliability portion of the packet 

header. When the packet is lost in the scenario given above, 

message-level reliability means that the movement message will 

simply be dropped (since delivery is not required), and that the 

fire message will be resent with the next packet. This approach is 

much more efficient in low bandwidth and lossy conditions.  

4.3 Minimizing latency 
The priority policies, flow and rate control techniques, and 

efficient encodings described above partially address latency 

problems. However, three additional causes of latency remain. 

The most critical latency problem occurs when ordered messages 

are lost, which causes other ordered messages to be blocked at the 

receiver while waiting for the missing message to arrive. A second 

source of latency occurs when there is not enough bandwidth and 

the outgoing message queue backs up. Last, time-critical messages 

may be delayed by waiting in the send queue or through packet 

loss. This kind of latency negatively impacts both feedthrough 

time and jitter. The game libraries we studied have techniques for 

reducing latency in all of these scenarios.  

4.3.1 Multiple ordered streams  
A significant source of latency comes from having to wait for 

reliable ordered messages that are lost or late; when this happens, 

all subsequent ordered messages are blocked at the receiver. 

Games partially address this problem by offering several 

unordered policy options, but still, some information must be 

ordered and the latency problem can still be significant.  

Since there are many message types each with different QoS 

requirements, it is common to have independently ordered 

messages. For example, ordered chat messages and ordered firing 

messages do not need to share an ordering, since the order of 

firing and chat are independent. In this case, a lost chat message 

should not block firing messages.  

Game libraries provide a mechanism for independent ordering; for 

example, Raknet provides 32 independent streams that are ordered 

relative only to messages on the same stream. Streams are 

identified using a channel number, which is specified as a 

parameter of each message sent by the sender. The channel 

number is encoded in a message-level header, so even though 

reliability is controlled at a packet level in Raknet, ordering is at a 

message level. This allows messages that are ordered on separate 

streams to be aggregated into a single packet. 

4.3.2 ‘Current state data’ policy  
When there is not enough bandwidth, the outgoing send queue 

can become backed up. Additionally, reliable messages can 

remain in a resend queue until an acknowledgement is received. 

In some cases, the information in these messages can become 

stale, and therefore will be useless when sent to the receiver. 

The ‘reliable sequenced’ policy used in Raknet partially addresses 

the problem of staleness in the reliable queue. Rather than 

resending reliable data that is stale, it drops the message from the 

resend queue when it receives an acknowledgement that a more 

recent update has arrived at the receiver.  

However, this policy does not deal with stale information in the 

regular send queue. To handle this situation, TNL adds a QoS 

level that they call ‘current state data’, which ensures that only the 



most recent update is sent. Before a message is sent, a check is 

performed to ensure that there is no updated value available. If 

there is an updated value, the queued message is dropped and 

replaced with the update. This approach ensures that only the 

most recent information is ever sent. However, it is important to 

note that the source of the queued information must be known, so 

this approach lends itself better to data replication tasks than it 

does to sending RPCs.  

4.3.3 ‘Quickest delivery’ policy  
Some messages need to arrive before all other information, either 

because they are highly latency-sensitive (e.g., a hit in a first-

person shooter game), or because subsequent messages are 

dependent on the earlier message (e.g., a new string table entry).  

To support this type of delivery, TNL includes a ‘quickest 

delivery’ policy that works by including a message in every 

outgoing packet until an acknowledgement is received (Figure 4). 

This guarantees the soonest possible delivery of a message – since 

in the event of a packet loss or a delayed packet, the message 

always appears in the next packet as well. This policy trades off 

bandwidth efficiency for minimized latency, since it sends 

information redundantly, but the penalty is usually not a large one 

since most game messages are small. However, this inefficiency 

means that the programmer must not overuse the policy. 

m1(QD) m2     

m1(QD)  m3               m4    

ACK(m1)
m1(QD)           m5              m6    

(Dropped)

m7                     m8

 

Figure 4: Quickest delivery policy sends a message with every 

packet until it is acknowledged, guaranteeing first arrival. 

5. SHARED WHITEBOARD SCENARIO 
The techniques used in game libraries are directly applicable to 

real-time groupware. As an example, we consider applying the 

techniques described above to a shared whiteboard application. 

Through this example, we show how these techniques address the 

different issues considered in Section 4: bandwidth optimization, 

low-cost reliability and ordering, and latency minimization. This 

section describes how the techniques can be applied, and presents 

a brief analysis of the result of applying them. 

5.1 Shared whiteboard network design 
Whiteboard message types. We assume that the shared 

whiteboard uses eight message types: chat, telepointer, tool 

selection, grab, drag, drop, annotation, and session information. 

QoS for each message type. There are different QoS requirements 

for each of the message types (summarized in Table 1). 

 Chat, annotation, and session information messages should all 

be reliable and ordered, but do not require synchronization with 

any other information streams, so they are all sent over their 

own independent channels. These message types have low 

requirements on feedthrough time, and so they can be given a 

low priority, which will allow them to be delayed in favor of 

more latency-sensitive information.  

 Telepointers need low feedback time, but do not need reliable 

or ordered delivery. Since telepointers are not dependent on any 

other messages, they are sent on their own ordering channel.  

 The message types related to drawing operations need to be 

ordered with one another, since the effects at the receiver will 

be incorrect if they are processed out of order. The most latency 

sensitive drawing operations are grab and drop, as these 

operations lock the object for modification, and so a quickest 

delivery (QD) policy is applied to these message types.  

 Drag operations, like telepointers, do not need to be reliable, 

although they do need to be ordered with the other drawing 

operations, so drag methods are given a sequenced ordering 

policy and high priority.  

 Tool selections must be ordered within the drawing channel, 

and their priority should be high so that the user’s avatar can 

promptly reflect tool changes.  

 Annotations are designed to be updated in real time, so each 

character is sent as it is typed. In order to provide feedthrough 

that preserves the sense of typing, these messages are given a 

medium priority to reduce latency.  

Table 1: QoS requirements for whiteboard message types. 

 Reliable Ordering Channel Priority 

Chat Yes Ordered 0 Low 

Tele No Sequenced 1 High 

Tool Yes Ordered 2 High 

Grab Yes Ordered 2 QD 

Drag No Sequenced 2 High 

Drop Yes Ordered 2 QD 

Annotation Yes Yes 3 Medium 

Session Yes Yes 4 Low 

Efficient message encoding. Chat, session information, tool 

selection, grabs, and drops are all discrete events and are therefore 

best modeled as RPCs. For each of these, we register an RPC and 

specify bit lengths for parameters where appropriate. For example, 

(x,y) coordinates should be encoded such that their limits do not 

exceed the maximum workspace dimensions, and tool selections 

should be encoded so that the tool parameter does not exceed the 

total number of tools available to the system. Telepointers and 

drag operations are modeled as replicated data, and the parameters 

are encoded using minimum bit lengths. 

String compression. The only strings sent by the system are those 

from chat messages and from pasting text strings to annotations. It 

is reasonable to assume that the names of users will be frequently 

typed in chat, and so usernames are added to the string table when 

users join a session. Other strings will be compressed using 

adaptive Huffman encoding, where the character frequencies are 

tracked and the Huffman tree is rebuilt and sent out periodically. 

Adaptive rates. Telepointers and drag operations are streaming 

types and are assigned a minimum update frequency of 0 updates 

per second and a maximum frequency of 30 updates per second. 

The rates will adapt according to the state of the network, 

maintaining the maximum rate when network resources are 

plentiful and decreasing when resources are constrained. Since 

telepointer updates and drag messages will comprise most of the 

messages sent by the system, this adaptive frequency range is all 

that is necessary to allow the system to degrade gracefully when 

network resources are constrained. 

No stale information. Telepointer and drag operations are given 

TNL’s current state data policy, which ensures that only the most 

up-to-date values are sent. This is possible because the telepointer 

and drag messages are modeled as replicated data rather than as 

RPCs. This policy will both reduce latency and traffic. 



5.2 Implications for performance 
Using the techniques described above in the implementation of 

the shared whiteboard will result in several improvements to the 

application’s performance on the real-world Internet. 

Reduced bandwidth. Since discrete operations are uncommon 

compared to telepointers, and drag operations and telepointers use 

the same amount of bandwidth, the maximum bandwidth for a 

shared whiteboard can be reasonably approximated by 

considering only that used by telepointers. Using the network 

design described above, the bandwidth for sending telepointers 

would be a small fraction of what is used by event-driven TCP. 

Under ideal network conditions, our approach would consume 

just over 11Kbps per connected client (UDP/IP header: 28 bytes; 

custom packet protocol: 12 bytes; message protocol: 3 bytes; 

telepointer payload: 5 bytes; send rate: 30 messages per second, 1 

message per packet). This is one-third the bandwidth used by the 

event-driven TCP example described in Section 2. 

The bandwidth differences are more dramatic when resources 

become constrained – in these situations, the flow controller will 

begin to aggregate telepointers, resulting in a substantial 

bandwidth saving. For example, aggregating 3 telepointers into 

each packet would decrease bandwidth usage to 5Kbps per client, 

through the reduction in packet headers. In addition, when 

bandwidth becomes so constrained that it can no longer support 

30 updates per second, the telepointer rate can drop, reducing the 

required bandwidth to suit the conditions. 

Better handling of time-sensitive information. Telepointer and 

drag operations will remain highly responsive, even in lossy 

network conditions. Their high priority ensures that they will be 

sent out (when there is enough bandwidth) before other operations 

that are more latency tolerant. In the event of packet loss, 

telepointers will not be blocked waiting for reliable information to 

be sent, and the most recent telepointer positions will be used. In 

the event of burst loss or temporary network congestion, the most 

recent telepointer positions will be sent as soon as possible. 

Grab and drop messages will always be sent ahead of any other 

types of information, so users will always know as soon as 

possible when another user has picked up or let go of an object in 

the workspace. This will enable faster turn-taking and fewer 

conflicts over objects. By sequencing and ordering all drawing 

operations, the operations will appear to work similarly to how 

they work on the sender’s machine, regardless of network effects. 

Graceful degradation. When bandwidth is constrained, the 

system will send packets less frequently and aggregate more 

messages into each packet. This adds a small amount of latency, 

but maintains smoothness. In extreme conditions, the send rate of 

telepointer and drag messages will be reduced, reducing the 

smoothness and or accuracy of the streams; but the application 

will continue to function, since the awareness messages will be 

held back whenever more critical messages are sent. 

Better overall usability. The user experience will be greatly 

improved compared with an event-driven TCP model. Under ideal 

network conditions, this network design will perform the same as 

TCP-based implementations. However, as network conditions 

worsen, our networking design will continue to support a highly 

usable shared whiteboard, with low latency, up-to-date telepointer 

and drag positions, and sustainable interaction, even in situations 

of extremely low bandwidth. 

6. DISCUSSION 
This paper presents a large number of networking techniques that 

are ready to use for building real-time distributed groupware. The 

techniques are presented at a high level, but the concepts are 

reasonably simple, and implementation details can be found in the 

code of the libraries. The techniques we discuss above are known 

to be effective through years of evaluation in games, and the game 

networking libraries can serve as high-quality examples of how to 

build these techniques. 

In the remainder of the paper, we discuss some of the underlying 

principles that can be used to guide the design of groupware 

network infrastructures more generally, suggest that groupware 

developers start using game network libraries, and outline several 

areas for future work. 

6.1 Underlying principles 
Our examination of game networking techniques has identified 

several underlying principles that can be used more generally to 

guide the design of real-time distributed groupware. Our 

experience suggests that groupware developers should be thinking 

about limiting bandwidth, using appropriate reliability and 

ordering policies, and providing mechanisms for graceful 

degradation of service when resources are limited. 

6.1.1 Limit bandwidth use 
In environments where bandwidth is limited, feedthrough time 

and jitter become major problems for groupware usability. These 

problems are becoming increasingly important as groupware is 

used in mobile settings with low capacity networks. Game 

libraries use a variety of techniques for reducing bandwidth 

requirements, based on the following principles: 

 Use efficient representations: send primitives as minimum bit-

length primitives, encode RPCs numerically, imply field and 

parameter names through order, use tables to encode strings, 

and avoid sending strings whenever possible. 

 Aggregate messages: when bandwidth is insufficient to send 

messages as they are generated, aggregate several into each 

packet. The small amount of added latency is a reasonable 

tradeoff for the increased efficiency. 

 Compress: It is useful to always attempt to compress strings or 

string-heavy payloads using a lossless techniques If the result is 

smaller, send it, and if not, send the original. 

 Don’t send stale information: ensure that every message will be 

is useful to the receiver, and replace outgoing information with 

current values if updates are available. 

6.1.2 Degrade gracefully 
Applications should be prepared to cope adaptively with lower 

levels of network service. Principles from the gaming network 

libraries allow application programmers to choose between 

degrading jitter, fidelity and feedthrough time: 

 Use adaptive flow control: flow control with an adaptive 

window size allows timely delivery when bandwidth is 

sufficient, and supports aggregation, priority scheduling, and 

rate control policies when bandwidth is constrained. 

 Determine frequency ranges: minimum and maximum update 

frequencies allow the application to reduce traffic flows 

appropriately to cope with limited network resources. 

 Set priorities: not all messages have the same level of 

importance, and careful message prioritization can have large 

effects on usability when bandwidth is constrained. 



 Provide network information to the application: application 

programmers can make good decisions about how to deal with 

poor network conditions, and so network monitoring 

information should be supplied by the toolkit layer. 

6.1.3 Use appropriate reliability and ordering  
A major source of latency is due to blocking incoming messages 

that are out of order. This scenario needs to be avoided as often as 

possible using the following principles: 

 Do not order unnecessarily: avoid ordering whenever possible 

– reliability requirements do not always imply that ordering is 

also required. 

 Order independently: both games and groupware send a wide 

variety of messages types, and ordered messages can be 

grouped into independently ordered streams. 

 Use sequenced policies: sequenced policies can be particularly 

appropriate for interactive applications because they keep 

messages ordered, avoid blocking, and do not send or resend 

stale information. Unreliable traffic can be cheaply ordered 

with reliable information using an unreliable sequenced policy. 

Likewise, reliable sequenced policies are also useful because 

they do not block unnecessarily. 

6.2 Use game networking libraries 
The reason that network gaming libraries have become common is 

that it is difficult to build good network code, and the same holds 

true for groupware. The prevalence of simplistic networking 

models like event-driven TCP is partly a result of the difficulty of 

designing and implementing for performance. Therefore, one way 

to build better-performing groupware, without requiring that 

groupware developers begin writing efficient networking code, is 

to start using existing game libraries for groupware. Games and 

groupware have many of the same requirements, and game 

network libraries meet the needs of groupware applications more 

closely than any other network implementations that are available. 

Additionally, they are robust and well-tested through real world 

use, and are likely to be more efficient to integrate and use than it 

is to develop a less efficient, less robust approach from scratch. 

Eventually, groupware may have its own networking libraries that 

are better-suited to the needs of groupware. Until then, game 

networking libraries represent the best low-effort option for 

developers who want their applications to be used on the Internet. 

6.3 Areas for future work 

6.3.1 Improvements to techniques 
Many of the techniques presented here offer opportunities for 

improvements. In particular, design aspects of some techniques 

vary among libraries, showing that determining the best method is 

not trivial and more work is required. Also, some of the 

techniques require considerable effort from the application 

programmer, and this effort can likely be reduced by automating 

some of these functions. Areas for future work include: 

Automating encoding. Game libraries have made it easier to 

customize message encodings, but hand-tailoring still demands 

considerable attention from the programmer. New methods are 

needed that use the same principles but reduce the load on 

developers. Some ideas include adaptively determining minimum 

bit-length encodings for primitives, dynamically building string 

tables based on frequencies, and simpler programming interfaces 

for encoding shared information. Work has begun on this aspect 

[10], but more could be done. 

Better string compression. Strings in games and groupware are 

short, frequent, and most of the redundancy is among strings in 

separate messages rather than within individual strings. However, 

most lossless techniques for compressing strings assume that the 

strings are long and that the redundancy is contained within the 

string. Raknet’s approach of dynamically generating new 

Huffman trees based on observed runtime character frequencies is 

a good example of a compression technique tailored to suit the 

characteristics of groupware, but there are certainly more 

opportunities available for more efficiently compressing strings. 

Adaptive window sizes for groupware. Game networking libraries 

use a variety of techniques for adaptively controlling window 

sizes. It is unclear which of these techniques is best, and it seems 

to depend on the characteristics of the groupware traffic. Further 

work is needed to determine how to best control adaptive window 

sizes in groupware, paying close attention to the bursty nature of 

interactive traffic, variable traffic patterns among applications, 

and diverse requirements for reliability among message types. In 

particular, further work should be done on the problem of 

controlling window sizes for unreliable traffic. 

Better aggregation policies. Aggregation in game networking 

libraries is driven by the window size only, but since aggregation 

adds latency, it should also be a function of the latency 

requirements of the information being sent. For example, 

aggregation should be avoided when low latency is required, and 

aggregation should be enabled when the added latency does not 

impact usability. QoS requirements and the network window size 

should both be considered by an effective aggregation policy. 

Specialized delivery policies. TNL’s quickest delivery and 

Raknet’s sequenced ordering are examples of specialized delivery 

policies that are well-suited to the needs of games and groupware. 

There are undoubtedly more scenarios that are unique to 

groupware traffic that could benefit from having policies tailored 

for the scenario. At a minimum, policies that address quality of 

experience issues beyond timeliness, such as smoothness and 

accuracy, are required. Additionally, policies that address the 

more complex aspects of collaboration such as degree of interest, 

focus and nimbus, and closely-coupled tasks would be beneficial. 

6.3.2 Lessons for developing new techniques 
Some of the techniques used in games take advantage of the 

characteristics of groupware traffic. These same characteristics 

can be applied to new groupware networking techniques. The 

characteristics that can lead to new techniques are: 

Streaming awareness information. Real-time groupware traffic 

consists mostly of awareness information. These messages are 

bursty, small, and frequent. Game networking libraries have made 

use of these characteristics to enhance their aggregation policies, 

compression and encoding techniques, and scheduling techniques. 

Making use of these same characteristics can drive future 

techniques and optimizations to existing techniques. 

Messages have diverse QoS requirements. Several of the 

techniques used in games are the direct result of observing the 

QoS requirements of game messages. The diverse QoS 

requirements of groupware can lead to further efficiency gains as 

the requirements are better understood and as policies and 

techniques are developed to take advantage of the requirements.  



7. RELATED WORK 
There is a great deal of research from a variety of domains that is 

relevant to the techniques, the principles, and the issues presented 

here. First, many of the basic ideas for the techniques presented 

here have originally appeared in research from the multimedia, IP 

telephony, distributed systems, and collaborative virtual 

environments research communities. A recent survey of 

application layer networking techniques for groupware presents 

an overview of techniques from these areas [4]. As mentioned 

earlier, these approaches are not always applicable to the specific 

needs and data that is seen in groupware, but they provide starting 

points for groupware-specific techniques. 

Second, other surveys of games and game networking present 

additional techniques that can be valuable. In particular, Smed 

and colleagues [20] have reviewed a variety of published 

academic work in military simulations, collaborative virtual 

environments, and networked games. These surveys introduce 

other techniques such as dead-reckoning that have been used in 

games and distributed simulations, and also mention some of the 

network techniques seen here (aggregation and compression, 

although the details are different to those of the game libraries).  

Finally, a core of groupware researchers are also looking at 

performance issues, including performance aspects of groupware 

distribution architectures [14,16], scalability [13], QoS [8,9], 

generalized compression [10], and interface techniques for hiding 

delay [11,12]. This work offers a valuable complement to the 

present study; although the performance models are often based 

on abstractions of the real network environment, and thus do not 

have sufficient detail to capture the issues addressed in our study, 

prior research provides a high-level context of toolkits and 

distribution architectures in which our techniques can be used. 

8. CONCLUSION 
This paper presents the first analysis of game networking based on 

source code and documentation from real game networking 

libraries. The techniques and principles presented here are the 

result of significant real-world experience from the gaming 

industry in delivering a quality experience to users over the 

Internet. These techniques and principles are directly applicable to 

real-time distributed groupware, and applying them will 

dramatically improve the performance of groupware when used 

under constrained network conditions. This work also has 

produced new directions for groupware networking research that 

are based on the current state of the art in game networking. 

Groupware aims to enable collaboration among people who are 

located all over the world. To do this, we must find ways of 

coping with the limitations of today’s Internet. Network games 

have been successfully providing rich, real-time, interactive 

experiences to groups of people located all over the world for 

many years. By bringing game network techniques and principles 

to groupware, we can both improve groupware performance and 

make groupware applications feasible across a much wider range 

of network situations and conditions. 
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