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Abstract. The basic elements of WIMP interfaces have praoeeie robust
components for building interactive systems, besthstandard interactors also
have limitations. On many occasions, researcheve haroduced augmented
GUI elements that are capable of more expressiteractions and that are
better suited to user tasks. Although many of the®seel designs have been
effective, augmented interactors are still inventedan ad-hoc fashion, and
there is no systematic way of thinking about origléag augmentations. As a
result, there is little understanding of the priotes underlying augmentation,
the relationships between different designs, ompitssibilities for creating new
interactors. In this paper we present a framewdikt specifies elemental
interactions with WIMP components and identifies gossible ways in which
augmentations can occur. We show the explanatatyganerative power of the
framework by analysing existing and novel augmeimégtactions.

1 Introduction

The basic interactors of Windows-lcons-Menus-Point&/IMP) interfaces have
proven over many years to be a robust and sucdessfuof building blocks for
developing interactive systems. As a result, th&t f@ years have seen the standard
desktop graphical user interface (GUI) change Vitttg. While designs based on this
model have been successful, a number of flaws baea identified (e.g., [2,4,16]).
For example, desktop interfaces often require gelarumber of GUI widgets, with
each widget mapped to a single system command.r@sult, higher-level tasks like
navigating and searching are not well supporteduiring that the user activate
multiple controls, or manipulate a single contralltiple times.

Numerous new controls, augmented controls, and Inio¥eraction techniques
have been developed that perform common desktép tatter than standard WIMP
interactors (e.g., [1,5,8,9,11,15,19,20,28]). Asllwe& number of augmented
interactions that address WIMP limitations have rbeelopted as standard GUI
idioms. For example, double-clicking is an augmgotaof the basic click selection
action, making use of a timeout period to increlenumber of states that can be
specified by the user; similarly, Shift-clickingas augmentation that uses a key press
to add a second mode to basic selection. Researbhee also introduced numerous
augmentations, often based on an existing intenaair GUI widget. For example,



OrthoZoom [1] is an augmented scroll thumb thatsuiee unused horizontal
dimension of mouse movement to control documentrezadiile the scroll thumb is
activated. By enabling zooming as well as scrollimgher-level navigation tasks are
supported, and switching between separate scrolimg zooming widgets is no
longer required. This augmentation, and others iikbave been shown to provide
numerous benefits, including increases in useropeidnce, better fit to high-level
user tasks, and reduction in unnecessary scretarclu

Although many different augmentations have beemp@sed, the design of these
augmentations has most often been carried out Edamoc fashion, and has usually
focused on solving a particular interaction probliema particular task. As a result,
there is no standardized way of designing augmienttand no way for designers to
analyze or discuss the principles underlying anaamgation, relationships between
different designs, or different design possibiitfer creating new interactions.

In this paper we present a framework that is intéeinith provide this foundation for
designers of augmented interactions. The framewdektifies the core elements of
an interaction in a WIMP interface, identifies thetion primitives that can be used in
an interaction, and specifies the types of augntientéhat can be contemplated. The
framework sets augmented interactions into a comkxser tasks at the high level,
and characteristics of input devices at the lowelevhe framework has both
explanatory and generative power. We analyse aradtacterize several existing
augmentations using the language and principleseoframework, and also use it to
generate new augmented interactions that have me@n bseen before. The
contributions of this work are: first, the idea ttheugmented interactions follow
standard underlying principles; second, the framkwbat gathers these principles
together in a form that is useful to designers; #midd, a demonstration of the
framework’s power through several example desigdar work shows that an
understanding of the principles underlying augmentgeraction can be a useful
design tool, and can aid in the evolution of thel GU

2. A Framework for Augmented Interaction

In order to simplify the process of designing augted interactions for WIMP
interfaces, we present a conceptual frameworkishaised on a high-level view of a
user’s interaction with a GUI. The framework has itst core the idea of an
interaction which we define as a combination of@bjectin the interface with one or
moreactions each of which have a characteristic degree efdiven. Interactions are
undertaken in service of a usersk and are supported bgput mechanismshat
provide the actual input data. In the following timts we describe each part of the
framework in more detail, starting with the ideaaofinteraction.

2.1 Interaction: Object + Actions
A WIMP interaction can be defined as a user’s malaiion of an on-screen entity.

We formalize this with the concepts of the Gabject and the interfaceaction
therefore, an interaction can be specified as omaeave actions applied to an object.



WIMP Objects: Data and Controls
An object is an entity in a WIMP interface that lasisible representation. There are
two basic object types in WIMP based GUIs: datactsjand controls.
Data objectsare the visual representations of the data ofésteicons in a file
explorer, text and links in a web browser, or costibjects in a visual workspace.
Controls are graphical instruments that allow manipulat@mindata [2]. Since
controls lie between the user's actions and theushctlata, they are indirect
instruments in a GUI. Traditional widgets such atdns and sliders are the most
common examples of controls; however, some typesatH objects can also be given
control capabilities (such as the links on a wef@epavhich act both as data on the
page, and as buttons that invoke navigation agtions

Actionsin WIMP interfaces

Actions are the manipulations that are possiblé witdata object or control, and can

be characterized by the degrees of freedom ofdkeettiat is being manipulated.

» 1D-Discrete The action is used to specify one of multipletesta For example,
clicking on an icon in a file browser implies sggirig which of two states the icon
is in. 1D-D actions are often implemented with tstate devices such as mouse
buttons, but devices with more than two statesatsm be employed [30].

» 1D-ContinuousThese actions allow specification of a singletowmous value. For
example, scrolling a document in one dimension iDacontinuous action. 1D-C
actions can receive input from devices that aredimensional, but can also use a
single dimension of a more powerful device (e.§. strolling using a 2D mouse).

» 2D-Continuous These actions allow simultaneous specificatiotmaf continuous
values. An example action is 2D movement of a aurgmut is commonly
received from any of several 2D pointing devices.

» Higher-dimensional actions3D and higher-degree actions are needed in some
applications. However, they are not common in WIMrfaces, and we do not
consider these actions further, other to notettiere are a number of high-degree-
of-freedom input devices whose extra dimensionsldcobe used in the
augmentations described below.

Higher-level manipulations can be specified usihgse action primitives. For
example, the common idiom dfaggingcan be characterized as an interaction made
up of two actions: a 1D-D action (to select theegb)j plus a 2D-C action (to move it
across the screen). Similarly, the idiom of ‘Skiftking’ can be characterized as a
combination of two 1D-D actions: one for the shdfitd one for the click.

2.2 Augmentation

An augmentation is a modification that is made oaation to increase expressive

power; we identify several possible augmentations.

» Adding states to a 1D-Discrete actiof simple augmentation involves increasing
the number of states that are possible for anaotem: for example, adding a state
to an on-screen button changes it from a two-statiget to a three-state widget
(e.g., pop-through buttons [30]).



» Adding a 1D-Discrete action to an existing actiédwlding a discrete dimension to
an existing action allows a multiplication of thgpeessiveness of the original —
essentially adding modes to the interaction. Exampiclude common techniques
such as Shift-clicking or Control-dragging, as wadl research techniques such as
Pressure Marks [26], which changes drag behaviased on pressure level.

» ‘Upgrading’ a 1D-Discrete action to 1D-Continuaubhis allows the conversion of
state-based manipulations to continuous manipulaior example, a scroll button
uses a 1D-D action; changing to a 1D-C action aldlwe scroll button to support
variable-rate scrolling [2], given an appropriafe-C input source.

* Adding a 1D-Continuous action to a 1D-Discrete awtiThis augmentation can
allow a continuous-value specification at the saime as a discrete selection. For
example, Benko and colleagues developed technitpresontinuous parameter
control using finger position on a multitouch seredth bi-manual interactions [5].

» Adding a secondary 1D-Continuous actidviultiple dimensions can be controlled
simultaneously with the addition of other 1D-C an8. For example, OrthoZoom
[1] adds support for zooming (a secondary 1D-Coagtto an existing 1D-C action
(scrolling). Note that adding a second 1D-C actierd not convert the interaction
to a true 2D manipulation (e.g. horizontal and ieaftscrolling); rather, it can
remain a composite of two 1D manipulations [20]\éth OrthoZoom).

* Adding a 1D-Continuous action to a 2D-Continuouiat There are many ways
that 2D movement can be augmented with an addltidegree of freedom. For
example, 1D-C pressure sensitivity is already dsembntrol line thickness in many
Tablet PC applications; pressure has also beentoseohtrol cursor size [26] and
zoom during 2D pointer movement [23].

» Adding a 2D-Continuous action to a 2D-Continuousi@ac These augmentations
add a second 2D capability to an interaction. Gurexamples generally involve
the addition of a second 2D position controllers-saen in multi-touch displays
which allow multiple fingers to simultaneously movetate, and scale objects.

As stated earlier, an interaction is made up of A @bject and a set of actions. By
adding to or modifying the actions related to ajeot) extra dimensions are added to
the interaction which must be controlled by somgutrmechanism. In the following
section we discuss input mechanisms as they redadetions, and later discuss some
additional rules for pairing input mechanisms aatioas.

2.3 Input M echanisms

Although a variety of input mechanisms can be usedontrol augmented actions,
not every device is suited to every action, andosirg appropriate input is more
complex than simply pairing devices and actiongheydimensions they control. The
following paragraphs set out some of the issuesdtching input device to actions.

Input M echanism Properties

The properties of the input mechanism can guidg#igng of input mechanism and
action, and here we highlight five properties thave been identified in previous
research on input issues (e.g., [14,16,17]).



» Physical Property Sensed€Common properties sensed by input devices include
position and force. Positional devices generallyprbast to positional tasks, and
force has traditionally been used as a mapping réde [14,17]. However,
exceptions can be found: the mouse is used forc@trol in Microsoft Windows,
and pressure has been used for single-DoF poditon#ol [7,22].

» Absolute vs. Relative Mappingbsolute devices like sliders, and pressure senso
have a fixed ‘zero’ location, whereas a mouse amdllswheel only sense relative
movements. Relative devices are advantageous letizeiscan be mapped to very
large virtual spaces; however, they also requinéching. Absolute devices are best
mapped to finite virtual spaces [17].

» Continuous vs. Discrete InpuContinuous devices like mice, foot pedals and
pressure sensors map best to continuous taskeabwlso be quantized depending
on the desired granularity [14]. Discrete devicesvge the user with physical
affordances, such as mechanical clicks and detents.

» Reflexivity This is a property of absolute force-sensing ckwilike pressure
sensors and isometric joysticks; these devicegmetu their zero position when
released by the user. Reflexive devices avoid thdlihg’ problem [6] that can
occur when an action is begun with the device petded'.

« Bi-directionality. This is a property of relative devices like mared scroll wheels;
input can be specified as both positive and negatilong a single axis. Some
absolute devices have implemented bi-directiondligyincluding a mode switch
[25], or a second sensor [7].

Sour ces of Input

Depending on the properties of the action that rbessupported, a number of input

devices may be suitable for controlling the actitm.situations where additional

devices are impractical to add to the system, atijgut schemes can be employed.

We have identified five ways that additional inpapability can be obtained:

» Overload the existing input capability with modés this scheme, a discrete DoF
facilitates a mode switch for another input. Foample, holding down a modifier
key (such as Shift or Control) could change theab&hr of continuous actions
(e.g., scrolling pages instead of lines with thekevheel) or discrete actions (e.g.,
open a link in a new tab instead of in the curneimdow). FlowMenu [10] for
example makes use of modes to increase the inpabdiies of a stylus.

» Use time as a DoHn this scheme time is used as a DoF. Time caquamtized
and used to indicate discrete actions (e.g., ‘hbedp’ activates after a time delay),
as a continuous parameter for acceleration funst{erg., scrolling accelerates the
longer a scroll button is activated), and for meétching (e.g., the difference
between two clicks and a double-click). Time is ocoomly used in WIMP
interfaces, and many gestural input systems usedsra DoF.

» Use constraintsin this scheme constraints are added to an irtterain order to
create more complex behavior. For example, Krugdralleagues [20] developed
a constraint-based system called RotateNTranslsé dllowed rotation to be
calculated automatically from translation infornoati Similarly, Speed-Dependent
Automatic Zooming calculates zoom level from therisscrolling speed [15].



» Leverage unused degrees of freedbmthis scheme an unused DoF in the input
device is used to control the augmented action.example, Zliding [25] utilizes
the unused pressure DoF to control zooming whidkrg) or scrolling with a stylus.

» Add new degrees of freedo# final approach is to add new input capabilities
the input device to provide the needed degreeseefibm. Some upgrades take an
existing device and transform it into a higher Ddévice, as with the 6DoF
VideoMouse [13]. Other upgrades to devices contbérform of independent input
devices, as with pressure augmented mice [7] amdcddlition of the scroll wheel.
Degrees of freedom can also be added to a systewgth independent modalities,
including gaze [21], bimanual input [19] or contilus voice input [11].

At a minimum, an input mechanism must meet the dsimn requirements of the
interaction. However, higher-dimension input can tsed for lower-dimension
actions: for example, 1D-Continuous input could dueantized to provide a 1D-
Discrete action, as frequently occurs when timgsiesd as an input dimension.

2.4 User Task

Although specific tasks for augmented interactiatlsvary, there are several general
reasons for wanting additional expressiveness du@am interaction. We have
identified four in particular:

* Integrate interactions that make sense togetharerpart of a higher level taskn
some situations, additional tasks can be natucaligbined with existing tasks. For
example, scrolling and zooming are naturally corabiininto a navigation
interaction [1,15], as are rotation and translafRij.

* ‘Working with your hands fullln some cases it is important to provide altéena
mechanisms for interaction when a primary mecharisrm use. For example,
‘spring-loaded folders’ allow users to open foldetsile dragging a file.

* Integrate multiple single actions into a continuastrol Frequent and repetitive
single actions can often be reconsidered as canisymanipulations; for example,
multiple presses of a ‘Back’ button could be cotegrinto a multi-level ‘Reach
Back’ button that goes back a variable distancené%and colleagues’ Pressure
Widgets provide a similar interaction [24].

 Allow richer input There are several situations where additionakesgiveness
could allow users to be more judicious in the execuof their tasks. Different
types of richness include being able to expressabiar levels of selection (e.g.,
‘lightly selected,” ‘strongly selected’), expresariable levels of confidence in an
action [8], or choose variable levels of previewamy real-world examples exist —
such as the way that the volume of a spoken commeftetts its urgency: “open
the door” versus “OPEN THE DOOR.”

2.5 Augmentation Guidelines

The process of creating an augmented interactimm, tinvolves first identifying the
action primitives that currently exist in the irdetion of interest, augmenting the



actions, and choosing input mechanisms for coimiglthose actions. The framework

makes it possible to consider augmentations aspipéication of simple changes to

existing primitives, but the task that the intel@actsupports determines whether an
augmentation is useful or needed.

In addition, although any number of augmented attons are possible, not all
augmentations would be effective or useful. Whersigiténg an augmented
interaction, one can begin by describing the existinteraction in terms of the
framework components: object, action(s), user taskl input mechanism. By
analyzing the interaction in terms of its partssgible augmentations may reveal
themselves. Comparing two similar augmented int@mas in this manner can also
reveal strengths and weaknesses in their respeddisigns, and potentially identify
the more promising design. We have identified savissues that designers should
consider when assessing the potential value otigmanted interaction:

» Leverage natural mappingslow a device is used can sometimes map natuxally
the interaction itself. For instance, the rotat@timension of a Polhemus tracker
maps easily to the rotation of an object, stylusehomaps to layers above the
surface [9], and multi-state buttons can be usednthicate definiteness and
confidence [8]. In addition, the direction of movemh of the device and on-screen
object / feedback should be compatible if posdqiBle

» Higher DoF is not always betteHigher DoF actions can be useful in some
situations, but troublesome in others. For instara® drawing is accomplished
with a mouse or stylus, but drawing a straight @B drawing) is difficult. As a
result, programs include modes for locking an indirhension (holding Shift
allows straight lines to be drawn). Even if therexdimensions of the device are
not used, a device that matches the degrees afone®f the action is better suited
to the task [2,16] (a 2D mouse performs better th&DoF device or two 1DoF
devices in 2D pointing tasks).

» Combine closely related interactiarSome object parameters are naturally related
(e.g. size and position, rotation and position) aoded to being combined in a
single interaction [16]. OrthoZoom [1] and SDAZ [18ombine scrolling and
zooming which are both important to navigating aeading documents.

* Integrality vs. SeparabilitytwWhen choosing an input mechanism, it may be ancle
whether a higher-DoF device or two lower-DoF desiege more suitable. The
principles of Integrality and Separability can assivhen making this decision.
Tightly coupled properties (e.g. size and positiarg best controlled with a single
high DoF input device, while separable propertieg).(size and hue) are best
controlled with two separate lower DoF devices [16]

» Feedback All interactions should provide some form of feedbaelated to the
state of the input device controlling the actioont® absolute devices, like foot
pedals and sliders, already give some feedbackheouser (both visually and
through proprioception); however, visual feedbaadlkespnted on or near the
augmented GUI object is also important since trex’sivisual attention is on the
object at the time of activation. Visual feedback particularly important for
pressure sensing devices [7,24]. Feedback throtiggr modalities such as haptics
[22] and pseudo-haptics [23] has proven usefuloimes cases for promoting user
awareness of GUI objects.



4. Examples Using the Framework

In order to show the generality, expressive powad generative capabilities of the
framework, this section characterizes several aunggde interactions using the
concepts described above. We start with interastitwat are commonly known in
many GUIs, then characterize augmentations tha¢ hppeared in research literature,
and finally present two interactions that are novdiese examples show that the
framework is able to summarize a very wide rangeegiting augmentations,
allowing them to be compared and discussed at sinaah level. In addition, the final
examples show that the framework is valuable indégign of new augmentations.

4.1 Characterizing Common Augmented | nteractions with the Framewor k

Here we look at two kinds of common augmented @utons: those using a keypress
as a mode switch, and those using a time threshdtihger enhanced behaviour.

Shift-clickingadds a mode to an existing selection action. Tiggnal action is a
1D-Discrete selection (often using the two statethe mouse button as input), and
the augmentation uses a keyboard key, also a 1B input device with two
states: these two states imply two modes for thecten. (Users generally do not
think of ordinary clicking as a mode, but pressing the Shift key just means that the
key is in its home state). Augmenting a selectiotioa with Shift mirrors the key’s
original use as a single-mode augmentation of dtbgboard actions (i.e., to provide
capitals), but if the original action is carriedtauith an input device like the mouse,
any key on the keyboard can be used as the augioentgput (as has been seen with
variations such as Control-click or Alt-click; vayas such as ‘A’-click or ‘B’-click
are also possible, as long as these keys are imgf bged for text input).

Shift-dragging uses the same augmentation as shift-clickingwitlt a different
base action — dragging an object with the 2D-Camtirs pointing device. The
additional mode is often used to restrict the degref freedom of the base action
from two dimensions to one — for example, limitingnslation to use only horizontal
or vertical movement. The augmentation can, of eeube used to increase capability
rather than to restrict — for example, some pixaldng programs use Shift-dragging
to switch temporarily to the eraser tool.

Double-clicking is an augmentation of a single-click selectionicaxct(a 1D-
Discrete action using the mouse button as an idpuice). The augmentation uses a
second single click, separated with a time thrash@ 1D continuous input,
discretized into two regions). This augmentatiorategy provides a simple unary
specification system, and can be extended: for pl@ntriple-clicking is used in
many applications (such as the Firefox browsen), ldgher numbers are possible.

Hover helpaugmentations also use time as the input mechafisenbase action is
made up of two constraints — that the pointer fmiled by a 2D-Continuous input
device) does not move, and that the pointer istémt@ver a help-sensitive object.
The time augmentation controls the appearanceeohétp balloon, which pops up if
the pointer is held motionless for a certain tifmeshold (a 1D-Discrete action).

Spring-loaded foldersare another 1D-Discrete augmentation using timehas
input mechanism. Spring loading allows a user tenop folder in a file browser



without releasing the mouse button, and is an elampthe ‘working with your
hands full' user task (see 82.4 above) that casdem in standard file browsers in
Macintosh OS/X and Windows Vista. The base acti®rai2D-Continuous drag
operation, with the added constraint that the goistops over a closed folder icon.
The augmentation is a 1D-Discrete time threshokl W@h hover help); once the
threshold is reached, the folder under the poiopems automatically. Using spring-
loaded folders, however, reveals a usability issben time is used as an extra DoF:
setting an appropriate time threshold can be diffi@and folders can open too quickly
(e.g., while the user is still reading the foldemre or deciding whether this is the
correct choice). The problem arises because tines dmt explicitly indicate user
intention, and is often used for other purposesi{@s reading the folder name). The
framework’s characterization of this interactionkes it clear that several other 1D-
Discrete input mechanisms could be used instead tifne threshold; thus, the
usability problem could be solved by using a medrmnthat has a more explicit
action that can be better interpreted as user tioterfe.g., a keyboard key, or the
secondary mouse button).

4.2 Characterizing Augmentations Proposed in Previous Resear ch

Here we analyse several augmented interactionhhest been proposed or evaluated
in previous research literature. The frameworkvedl@haracterization of a wide range
of different designs, and also allows simple coriggar of similar techniques.

Rate-controlled scroll buttongrdinary scroll buttons are widgets that control
scrolling for a single axis of a document; clickitige button scrolls by one line, and
holding the button scrolls at a fixed rate. Theebastion, therefore, is a simple 1D-
Discrete action (selecting the widget with a twatstinput device like a mouse
button). The fixed scroll rate, however, is oftest mptimal for the user’s task. To
increase the expressiveness of the control, rdse@rdave proposed augmenting
scroll buttons to allow the user to control theoficrate. This involves adding a 1D-
Continuous action to specify the rate. There areersg¢ 1D-Continuous input
mechanisms that can be used for this action: pusviesearchers have suggested a
pressure sensor [3,24], but others are also pessiitluding pointer distance from
the widget, or dwell time on the widget.

Combined zooming and scrollinqResearchers have invented techniques for
controlling scrolling and zooming at the same tifmethe OrthoZoom technique [1],
one dimension of the 2D pointer controls documenation (i.e., normal scrolling
with the scroll thumb), and the other dimension ifluhis unused during scrolling)
controls zoom level. In the Zliding technique [23homing with a pressure sensor
augments ordinary scrolling. In these techniguss blase action of scrolling is a 1D-
Continuous action on the scroll-thumb widget, alnel augmentation adds a second
1D-Continuous action (the orthogonal dimensiorhefpointer or the pressure sensor)
to control zoom. A third design that combines zamgnand scrolling, but one that
does not put zoom level under user control, is &f#ependent Automatic Zooming
(SDAZ) [15]. In this technique, the zoom level ist@matically calculated from the
scrolling speed; although the augmentation stilsus 1D-Continuous action, there is
no user control and the manipulation of the DoFplesys entirely within the system.



Pop-through mouse buttomase a hardware augmentation of regular mouse rmitto
[30] that provide a second button click beneath tbemal click mechanism. This
converts a mouse button from a 1D-Discrete inputagewith two states, to one with
three states (up, first click, second click). Pbmtigh buttons provide a novel input
mechanism to match the addition of a 1D-Discret®amn an existing 1D-Discrete
mouse-click-based action (such as the augmentasied in spring-loaded folders).

Bi-manual input Several researchers have explored techniquesiseatwvo hands
for input. For example, the non-dominant hand aamrol panning (a 2D-Continuous
action), while the dominant hand performs detabpe@rations with the mouse [19].
Bimanual panning is an example of an augmentatiah ltappens at the level of the
workspace itself, and operates as a general c@gahiht can occur along with any
other operation (i.e., it is not specific to a garar interaction technique or widget).

Non-speech voice inpltas been suggested as a way to enrich standaktbples
interactions. For example, Harada al demonstrate ‘Voicepen,” a drawing tool in
which parameters such as line width or opacity @metinuously controlled by the
pitch or loudness of the user’'s voice [11]. Theebastion in this example (line
drawing) is a 2D-Continuous action; the augmentatiare separate 1D-Continuous
inputs that control the different line parametdise motivation for the augmentation
is to increase the expressivity of standard drawlings example is a good illustration
of how the framework can assist designers with dbmparison and evaluation of
novel interactions. In the case of Voicepen, theniework’s characterization suggests
that the new input modality of non-speech vocairatould be compared to more
traditional 1D-Continuous input mechanisms such akder or a mouse wheel.

4.3 Characterizing Novel Augmentations

To show the framework’s value in helping designexplore new regions of design
space, here we present two novel augmented ini@mactone that allows users to
control the size and detail of object previews, and that allows users to specify an
action with different degrees of confidence.

Variable-size previewsln this example, we show how the framework helped
identify design opportunities in presenting riclpeeviews (adding a 1D-Continuous
action to control preview detail). Ordinary webkinand icons represent underlying
data, but do not fully describe it: for exampldil@icon shows the type and name of
a file, but not its contents; hyperlinks show eless, often indicating only that a link
exists. To provide more information, some kindslata objects provide previews of
their content; however, these previews are usymthyided at a single fixed size. We
augmented the preview capabilities of ordinary obpelection (a 1D-Discrete base
action) to provide user control over preview siEg(re 1). This allows the user to
select how much preview information is appropriai®e implemented this
augmentation with a pressure-sensitive mouse; asuffer presses harder on the
button, additional detail is provided through artmnail image and a status-bar
display. Pressure is a 1D-Continuous input mechanésd matches the nature of the
input action (i.e., requesting variable detail of\pew). Other input mechanisms are
also possible for this augmentation (e.g., a sevhbel), but pressure maps well to an
abstract idea like user interest [8], providingagunal mapping for the interaction.
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Fig. 1. a) Variable preview of a file folder. b) As prassincreases, thumbnail size increases.

Rich activations Our second novel example involves the enrichnafntser
capabilities in a file explorer, through 1D-Dis@edugmentations. Some actions in
GUIs are possibly dangerous, such as opening sytielers, or downloading items
from the web that have been identified as potdptizhrmful. User preferences and
system security settings often require that usersien such activations through a
confirmation dialog box, or may even require thaens activate several menus to
alter their preferences or security settings. Ttém result in user frustration,
especially when a user’s task is interrupted andnaibjects that the user knows are
safe have been marked as potentially harmful. Vgneunted these activation actions
with a ‘degree of confidence’ parameter that allousers to avoid unneeded
confirmation dialogs. We used pressure for this pavameter’s input, since pressure
can be quantized into several different levels, sinde (as described above) pressure
maps well to degree of interest or confidence. Whtk augmentation, system folders
can be opened without the dialog if the user appgli®ssure beyond a fixed threshold
(Figure 2). Similarly, the user's confidence in igating web content can be
communicated to the system through either a haedsmift press of the mouse button.

This augmentation can also be applied to drag-aog-dperations (Figure 3). In
this technique, the user can place content intoldef with a variable degree of
confidence: for example, a user could drop a miilgidnto a ‘video only’ folder by
pressing harder before the drop action.
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Fig. 2. a) A secure folder that require¢gFig. 3. a) The folder is set to only accept image
enhanced activation. b) With enougHtiles. b) With additional pressure, the icon
pressure, the folder opens. shows that the defaults are overridden.




6. Discussion

Here we discuss the relationship of our frameworkther formalisms and models of
interface development, and comment on issues celatethe design and use of
augmented interactions more generally.

First, a number of other models exist for desigremgl developing interactions,
including Direct Manipulation [29], Instrumentaltémaction [2], and Reality-Based
Interaction [18]. In addition, formalisms exist fepecifying and notating interactions:
for example, Buxton’s three-state model [6] or ttheer Action Notation (UAN) [12].
Our augmented interactions framework is not meameplace other design models;
rather it is a tool for comparing and designingiattions that are developed in the
context of other interaction models. Although werdngresented this framework in
the context of WIMP interfaces, the ideas can gas#l applied to other interface-
design paradigms. For example, an interface lik&N/TBols [3] does not include
scroll bars, pull-down menus, or the notion of sbm (instead, it includes a number
of post-WIMP interactors like toolglasses, markimgnus and floating palettes, as
well as elements of direct manipulation). Howevdre augmented interactions
framework could still be employed within this coxttetoolglasses could include
multiple modes, or their size could be modifiabléhwan augmented interaction;
floating palettes include buttons that could beraeigted; and the direct manipulation
actions in this interface could also be augmengadguour approach.

The main contribution of our framework is thatabks explicitly at the issue of
augmenting interaction, which extends what othemfdisms are intended to do. For
example, Buxton's three-state model can charaetarizl notate existing interactions,
but does not set out what is possible for augmiemaSimilarly, UAN is a notation
for what does occur rather than a specificatiowladit is possible; that is, a statement
of action with a design rather than specificatidrthe design space for a particular
interactor. We note, however, that Buxton’s modeUAN could be paired with our
framework as notation.

Second, our experiences with augmented interactioiggiest several questions
regarding wider-scale deployment of these new tigctas.

Will input hardware support the new design&@ditional degrees of freedom are
gradually being added to input devices: scroll vdheare now standard, and
commercial devices such as the IBM ScrollPoint reoaisd the Xbox 360 controller
support pressure input. Devices like isometric ficks, pressure sensors, and multi-
touch screens are widely available. As more powerfout devices become more
readily available, more applications can make dsbair capabilities.

Will new designs break existing interaction style&he advantage of the
framework is that it allows an augmentation to lekbn into components so that
designers can consider whether new actions canupposted with existing input
devices. As shown in the examples, many augmentatan be designed such that
the original interaction is preserved, and the aggfation can be used optionally (like
a shortcut) by those who wish to do so.

Is the framework ‘just for shortcuts’Although shortcuts are a common
modification, it is clear from the examples giveboee that the framework is able to
characterize more than simply shortcuts. For exapgadding rate control to a scroll
button (a 1D-Continuous augmentation to a 1D-Disceetion) provides a degree of



control over scrolling that was not possible befaimilarly, the ability to represent
combined actions (such as scrolling and zoomingyvshthat the framework can help
designers think about higher-level design ideash sag the integration of different
kinds of behaviour in the same control.

7. Conclusions and Future Work

Augmentations to standard GUI interactions are rfmgoming common, both in
research literature and commercial products; howewsost augmentations are
designed in an ad-hoc fashion. We presented a Wwankefor understanding and
designing augmented GUI interactions that can middmparing, evaluating, and
building GUI augmentations. The framework is ableategorize and describe a wide
range of previously developed augmented interastiolVe also presented
augmentations that are novel, showing the powethefframework to help in the
exploration of design space and in the identif@atf new design opportunities.

Our work in the area of augmented interactions @dlhtinue in three ways. First,
further development and refinement of the framewwaik add detail to the basic
dimensions described here. Second, quantitativleiai@ns of some of our designs
will be carried out to measure the benefit of vasi@mugmentations and to test the
comparative power of the framework. Third, we veHlplore possibilities in toolkit
support for augmented interactions, so that dessgoan quickly and easily include
augmented interactions in new applications, and @ ofit existing systems.
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