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Abstract. The basic elements of WIMP interfaces have proven to be robust 
components for building interactive systems, but these standard interactors also 
have limitations. On many occasions, researchers have introduced augmented 
GUI elements that are capable of more expressive interactions and that are 
better suited to user tasks. Although many of these novel designs have been 
effective, augmented interactors are still invented in an ad-hoc fashion, and 
there is no systematic way of thinking about or designing augmentations. As a 
result, there is little understanding of the principles underlying augmentation, 
the relationships between different designs, or the possibilities for creating new 
interactors. In this paper we present a framework that specifies elemental 
interactions with WIMP components and identifies the possible ways in which 
augmentations can occur. We show the explanatory and generative power of the 
framework by analysing existing and novel augmented interactions.  

1   Introduction 

The basic interactors of Windows-Icons-Menus-Pointer (WIMP) interfaces have 
proven over many years to be a robust and successful set of building blocks for 
developing interactive systems. As a result, the past 30 years have seen the standard 
desktop graphical user interface (GUI) change very little. While designs based on this 
model have been successful, a number of flaws have been identified (e.g., [2,4,16]). 
For example, desktop interfaces often require a large number of GUI widgets, with 
each widget mapped to a single system command. As a result, higher-level tasks like 
navigating and searching are not well supported, requiring that the user activate 
multiple controls, or manipulate a single control multiple times.  

Numerous new controls, augmented controls, and novel interaction techniques 
have been developed that perform common desktop tasks better than standard WIMP 
interactors (e.g., [1,5,8,9,11,15,19,20,28]). As well, a number of augmented 
interactions that address WIMP limitations have been adopted as standard GUI 
idioms. For example, double-clicking is an augmentation of the basic click selection 
action, making use of a timeout period to increase the number of states that can be 
specified by the user; similarly, Shift-clicking is an augmentation that uses a key press 
to add a second mode to basic selection. Researchers have also introduced numerous 
augmentations, often based on an existing interaction or GUI widget. For example, 



OrthoZoom [1] is an augmented scroll thumb that uses the unused horizontal 
dimension of mouse movement to control document zoom while the scroll thumb is 
activated. By enabling zooming as well as scrolling, higher-level navigation tasks are 
supported, and switching between separate scrolling and zooming widgets is no 
longer required. This augmentation, and others like it, have been shown to provide 
numerous benefits, including increases in user performance, better fit to high-level 
user tasks, and reduction in unnecessary screen clutter. 

Although many different augmentations have been proposed, the design of these 
augmentations has most often been carried out in an ad-hoc fashion, and has usually 
focused on solving a particular interaction problem for a particular task. As a result, 
there is no standardized way of designing augmentations, and no way for designers to 
analyze or discuss the principles underlying an augmentation, relationships between 
different designs, or different design possibilities for creating new interactions.  

In this paper we present a framework that is intended to provide this foundation for 
designers of augmented interactions. The framework identifies the core elements of 
an interaction in a WIMP interface, identifies the action primitives that can be used in 
an interaction, and specifies the types of augmentation that can be contemplated. The 
framework sets augmented interactions into a context of user tasks at the high level, 
and characteristics of input devices at the low level. The framework has both 
explanatory and generative power. We analyse and characterize several existing 
augmentations using the language and principles of the framework, and also use it to 
generate new augmented interactions that have not been seen before. The 
contributions of this work are: first, the idea that augmented interactions follow 
standard underlying principles; second, the framework that gathers these principles 
together in a form that is useful to designers; and third, a demonstration of the 
framework’s power through several example designs. Our work shows that an 
understanding of the principles underlying augmented interaction can be a useful 
design tool, and can aid in the evolution of the GUI. 

2. A Framework for Augmented Interaction 

In order to simplify the process of designing augmented interactions for WIMP 
interfaces, we present a conceptual framework that is based on a high-level view of a 
user’s interaction with a GUI. The framework has at its core the idea of an 
interaction, which we define as a combination of an object in the interface with one or 
more actions, each of which have a characteristic degree of freedom. Interactions are 
undertaken in service of a user task, and are supported by input mechanisms that 
provide the actual input data. In the following sections we describe each part of the 
framework in more detail, starting with the idea of an interaction. 

2.1 Interaction: Object + Actions 

A WIMP interaction can be defined as a user’s manipulation of an on-screen entity. 
We formalize this with the concepts of the GUI object and the interface action; 
therefore, an interaction can be specified as one or more actions applied to an object. 



WIMP Objects: Data and Controls 
An object is an entity in a WIMP interface that has a visible representation. There are 
two basic object types in WIMP based GUIs: data objects and controls. 

Data objects are the visual representations of the data of interest: icons in a file 
explorer, text and links in a web browser, or custom objects in a visual workspace.  

Controls are graphical instruments that allow manipulation of data [2]. Since 
controls lie between the user’s actions and the actual data, they are indirect 
instruments in a GUI. Traditional widgets such as buttons and sliders are the most 
common examples of controls; however, some types of data objects can also be given 
control capabilities (such as the links on a web page, which act both as data on the 
page, and as buttons that invoke navigation actions).  

Actions in WIMP interfaces 
Actions are the manipulations that are possible with a data object or control, and can 
be characterized by the degrees of freedom of the data that is being manipulated. 
• 1D-Discrete. The action is used to specify one of multiple states. For example, 

clicking on an icon in a file browser implies specifying which of two states the icon 
is in. 1D-D actions are often implemented with two-state devices such as mouse 
buttons, but devices with more than two states can also be employed [30]. 

• 1D-Continuous. These actions allow specification of a single continuous value. For 
example, scrolling a document in one dimension is a 1D-continuous action. 1D-C 
actions can receive input from devices that are one-dimensional, but can also use a 
single dimension of a more powerful device (e.g., 1D scrolling using a 2D mouse). 

• 2D-Continuous. These actions allow simultaneous specification of two continuous 
values. An example action is 2D movement of a cursor; input is commonly 
received from any of several 2D pointing devices.  

• Higher-dimensional actions. 3D and higher-degree actions are needed in some 
applications. However, they are not common in WIMP interfaces, and we do not 
consider these actions further, other to note that there are a number of high-degree-
of-freedom input devices whose extra dimensions could be used in the 
augmentations described below. 

Higher-level manipulations can be specified using these action primitives. For 
example, the common idiom of dragging can be characterized as an interaction made 
up of two actions: a 1D-D action (to select the object) plus a 2D-C action (to move it 
across the screen). Similarly, the idiom of ‘Shift-clicking’ can be characterized as a 
combination of two 1D-D actions: one for the shift, and one for the click. 

2.2 Augmentation 

An augmentation is a modification that is made to an action to increase expressive 
power; we identify several possible augmentations. 
• Adding states to a 1D-Discrete action. A simple augmentation involves increasing 

the number of states that are possible for an interaction: for example, adding a state 
to an on-screen button changes it from a two-state widget to a three-state widget 
(e.g., pop-through buttons [30]). 



• Adding a 1D-Discrete action to an existing action. Adding a discrete dimension to 
an existing action allows a multiplication of the expressiveness of the original – 
essentially adding modes to the interaction. Examples include common techniques 
such as Shift-clicking or Control-dragging, as well as research techniques such as 
Pressure Marks [26], which changes drag behaviour based on pressure level.  

• ‘Upgrading’ a 1D-Discrete action to 1D-Continuous. This allows the conversion of 
state-based manipulations to continuous manipulation. For example, a scroll button 
uses a 1D-D action; changing to a 1D-C action allows the scroll button to support 
variable-rate scrolling [2], given an appropriate 1D-C input source. 

• Adding a 1D-Continuous action to a 1D-Discrete action. This augmentation can 
allow a continuous-value specification at the same time as a discrete selection. For 
example, Benko and colleagues developed techniques for continuous parameter 
control using finger position on a multitouch screen with bi-manual interactions [5]. 

• Adding a secondary 1D-Continuous action. Multiple dimensions can be controlled 
simultaneously with the addition of other 1D-C actions. For example, OrthoZoom 
[1] adds support for zooming (a secondary 1D-C action) to an existing 1D-C action 
(scrolling). Note that adding a second 1D-C action need not convert the interaction 
to a true 2D manipulation (e.g. horizontal and vertical scrolling); rather, it can 
remain a composite of two 1D manipulations [20] (as with OrthoZoom). 

• Adding a 1D-Continuous action to a 2D-Continuous action. There are many ways 
that 2D movement can be augmented with an additional degree of freedom. For 
example, 1D-C pressure sensitivity is already used to control line thickness in many 
Tablet PC applications; pressure has also been used to control cursor size [26] and 
zoom during 2D pointer movement [23]. 

• Adding a 2D-Continuous action to a 2D-Continuous action. These augmentations 
add a second 2D capability to an interaction. Current examples generally involve 
the addition of a second 2D position controller – as seen in multi-touch displays 
which allow multiple fingers to simultaneously move, rotate, and scale objects. 

As stated earlier, an interaction is made up of a GUI object and a set of actions. By 
adding to or modifying the actions related to an object, extra dimensions are added to 
the interaction which must be controlled by some input mechanism. In the following 
section we discuss input mechanisms as they relate to actions, and later discuss some 
additional rules for pairing input mechanisms and actions.  

2.3 Input Mechanisms 

Although a variety of input mechanisms can be used to control augmented actions, 
not every device is suited to every action, and choosing appropriate input is more 
complex than simply pairing devices and actions by the dimensions they control. The 
following paragraphs set out some of the issues in matching input device to actions. 

Input Mechanism Properties 
The properties of the input mechanism can guide the pairing of input mechanism and 
action, and here we highlight five properties that have been identified in previous 
research on input issues (e.g., [14,16,17]).  



• Physical Property Sensed. Common properties sensed by input devices include 
position and force. Positional devices generally map best to positional tasks, and 
force has traditionally been used as a mapping for rate [14,17]. However, 
exceptions can be found: the mouse is used for rate control in Microsoft Windows, 
and pressure has been used for single-DoF positional control [7,22]. 

• Absolute vs. Relative Mapping. Absolute devices like sliders, and pressure sensors 
have a fixed ‘zero’ location, whereas a mouse and scroll wheel only sense relative 
movements. Relative devices are advantageous because they can be mapped to very 
large virtual spaces; however, they also require clutching. Absolute devices are best 
mapped to finite virtual spaces [17]. 

• Continuous vs. Discrete Input. Continuous devices like mice, foot pedals and 
pressure sensors map best to continuous tasks, but can also be quantized depending 
on the desired granularity [14]. Discrete devices provide the user with physical 
affordances, such as mechanical clicks and detents. 

• Reflexivity. This is a property of absolute force-sensing devices like pressure 
sensors and isometric joysticks; these devices return to their zero position when 
released by the user. Reflexive devices avoid the ‘nulling’ problem [6] that can 
occur when an action is begun with the device not ‘zeroed’. 

• Bi-directionality. This is a property of relative devices like mice and scroll wheels; 
input can be specified as both positive and negative along a single axis. Some 
absolute devices have implemented bi-directionality by including a mode switch 
[25], or a second sensor [7]. 

Sources of Input 
Depending on the properties of the action that must be supported, a number of input 
devices may be suitable for controlling the action. In situations where additional 
devices are impractical to add to the system, other input schemes can be employed. 
We have identified five ways that additional input capability can be obtained: 
• Overload the existing input capability with modes. In this scheme, a discrete DoF 

facilitates a mode switch for another input. For example, holding down a modifier 
key (such as Shift or Control) could change the behavior of continuous actions 
(e.g., scrolling pages instead of lines with the scroll wheel) or discrete actions (e.g., 
open a link in a new tab instead of in the current window). FlowMenu [10] for 
example makes use of modes to increase the input capabilities of a stylus. 

• Use time as a DoF. In this scheme time is used as a DoF. Time can be quantized 
and used to indicate discrete actions (e.g., ‘hover help’ activates after a time delay), 
as a continuous parameter for acceleration functions (e.g., scrolling accelerates the 
longer a scroll button is activated), and for mode switching (e.g., the difference 
between two clicks and a double-click). Time is commonly used in WIMP 
interfaces, and many gestural input systems use time as a DoF. 

• Use constraints. In this scheme constraints are added to an interaction in order to 
create more complex behavior. For example, Kruger and colleagues [20] developed 
a constraint-based system called RotateNTranslate that allowed rotation to be 
calculated automatically from translation information. Similarly, Speed-Dependent 
Automatic Zooming calculates zoom level from the user’s scrolling speed [15]. 



• Leverage unused degrees of freedom. In this scheme an unused DoF in the input 
device is used to control the augmented action. For example, Zliding [25] utilizes 
the unused pressure DoF to control zooming while sliding or scrolling with a stylus. 

• Add new degrees of freedom. A final approach is to add new input capabilities to 
the input device to provide the needed degrees of freedom. Some upgrades take an 
existing device and transform it into a higher DoF device, as with the 6DoF 
VideoMouse [13]. Other upgrades to devices come in the form of independent input 
devices, as with pressure augmented mice [7] and the addition of the scroll wheel. 
Degrees of freedom can also be added to a system through independent modalities, 
including gaze [21], bimanual input [19] or continuous voice input [11]. 

At a minimum, an input mechanism must meet the dimension requirements of the 
interaction. However, higher-dimension input can be used for lower-dimension 
actions: for example, 1D-Continuous input could be quantized to provide a 1D-
Discrete action, as frequently occurs when time is used as an input dimension. 

2.4 User Task 

Although specific tasks for augmented interactions will vary, there are several general 
reasons for wanting additional expressiveness during an interaction. We have 
identified four in particular: 
• Integrate interactions that make sense together or are part of a higher level task. In 

some situations, additional tasks can be naturally combined with existing tasks. For 
example, scrolling and zooming are naturally combined into a navigation 
interaction [1,15], as are rotation and translation [20]. 

• ‘Working with your hands full.’ In some cases it is important to provide alternate 
mechanisms for interaction when a primary mechanism is in use. For example, 
‘spring-loaded folders’ allow users to open folders while dragging a file. 

• Integrate multiple single actions into a continuous control. Frequent and repetitive 
single actions can often be reconsidered as continuous manipulations; for example, 
multiple presses of a ‘Back’ button could be converted into a multi-level ‘Reach 
Back’ button that goes back a variable distance. Ramos and colleagues’ Pressure 
Widgets provide a similar interaction [24]. 

• Allow richer input. There are several situations where additional expressiveness 
could allow users to be more judicious in the execution of their tasks. Different 
types of richness include being able to express variable levels of selection (e.g., 
‘lightly selected,’ ‘strongly selected’), express variable levels of confidence in an 
action [8], or choose variable levels of preview. Many real-world examples exist – 
such as the way that the volume of a spoken command reflects its urgency: “open 
the door” versus “OPEN THE DOOR.” 

2.5 Augmentation Guidelines 

The process of creating an augmented interaction, then, involves first identifying the 
action primitives that currently exist in the interaction of interest, augmenting the 



actions, and choosing input mechanisms for controlling those actions. The framework 
makes it possible to consider augmentations as the application of simple changes to 
existing primitives, but the task that the interaction supports determines whether an 
augmentation is useful or needed. 

In addition, although any number of augmented interactions are possible, not all 
augmentations would be effective or useful. When designing an augmented 
interaction, one can begin by describing the existing interaction in terms of the 
framework components: object, action(s), user task and input mechanism. By 
analyzing the interaction in terms of its parts, possible augmentations may reveal 
themselves. Comparing two similar augmented interactions in this manner can also 
reveal strengths and weaknesses in their respective designs, and potentially identify 
the more promising design. We have identified several issues that designers should 
consider when assessing the potential value of an augmented interaction:  
• Leverage natural mappings. How a device is used can sometimes map naturally to 

the interaction itself. For instance, the rotation dimension of a Polhemus tracker 
maps easily to the rotation of an object, stylus hover maps to layers above the 
surface [9], and multi-state buttons can be used to indicate definiteness and 
confidence [8]. In addition, the direction of movement of the device and on-screen 
object / feedback should be compatible if possible [2]. 

• Higher DoF is not always better. Higher DoF actions can be useful in some 
situations, but troublesome in others. For instance, 2D drawing is accomplished 
with a mouse or stylus, but drawing a straight line (1D drawing) is difficult. As a 
result, programs include modes for locking an input dimension (holding Shift 
allows straight lines to be drawn). Even if the extra dimensions of the device are 
not used, a device that matches the degrees of freedom of the action is better suited 
to the task [2,16] (a 2D mouse performs better than a 6DoF device or two 1DoF 
devices in 2D pointing tasks). 

• Combine closely related interactions. Some object parameters are naturally related 
(e.g. size and position, rotation and position) and suited to being combined in a 
single interaction [16]. OrthoZoom [1] and SDAZ [15] combine scrolling and 
zooming which are both important to navigating and reading documents. 

• Integrality vs. Separability. When choosing an input mechanism, it may be unclear 
whether a higher-DoF device or two lower-DoF devices are more suitable. The 
principles of Integrality and Separability can assist when making this decision. 
Tightly coupled properties (e.g. size and position) are best controlled with a single 
high DoF input device, while separable properties (e.g. size and hue) are best 
controlled with two separate lower DoF devices [16]. 

• Feedback. All interactions should provide some form of feedback related to the 
state of the input device controlling the action. Some absolute devices, like foot 
pedals and sliders, already give some feedback to the user (both visually and 
through proprioception); however, visual feedback presented on or near the 
augmented GUI object is also important since the user’s visual attention is on the 
object at the time of activation. Visual feedback is particularly important for 
pressure sensing devices [7,24]. Feedback through other modalities such as haptics 
[22] and pseudo-haptics [23] has proven useful in some cases for promoting user 
awareness of GUI objects. 



4. Examples Using the Framework 

In order to show the generality, expressive power, and generative capabilities of the 
framework, this section characterizes several augmented interactions using the 
concepts described above. We start with interactions that are commonly known in 
many GUIs, then characterize augmentations that have appeared in research literature, 
and finally present two interactions that are novel. These examples show that the 
framework is able to summarize a very wide range of existing augmentations, 
allowing them to be compared and discussed at an abstract level. In addition, the final 
examples show that the framework is valuable in the design of new augmentations. 

4.1 Characterizing Common Augmented Interactions with the Framework 

Here we look at two kinds of common augmented interactions: those using a keypress 
as a mode switch, and those using a time threshold to trigger enhanced behaviour. 

Shift-clicking adds a mode to an existing selection action. The original action is a 
1D-Discrete selection (often using the two states of the mouse button as input), and 
the augmentation uses a keyboard key, also a 1D-Discrete input device with two 
states: these two states imply two modes for the selection. (Users generally do not 
think of ordinary clicking as a mode, but not pressing the Shift key just means that the 
key is in its home state). Augmenting a selection action with Shift mirrors the key’s 
original use as a single-mode augmentation of other keyboard actions (i.e., to provide 
capitals), but if the original action is carried out with an input device like the mouse, 
any key on the keyboard can be used as the augmentation input (as has been seen with 
variations such as Control-click or Alt-click; versions such as ‘A’-click or ‘B’-click 
are also possible, as long as these keys are not being used for text input). 

Shift-dragging  uses the same augmentation as shift-clicking, but with a different 
base action – dragging an object with the 2D-Continuous pointing device. The 
additional mode is often used to restrict the degrees of freedom of the base action 
from two dimensions to one – for example, limiting translation to use only horizontal 
or vertical movement. The augmentation can, of course, be used to increase capability 
rather than to restrict – for example, some pixel drawing programs use Shift-dragging 
to switch temporarily to the eraser tool. 

Double-clicking is an augmentation of a single-click selection action (a 1D-
Discrete action using the mouse button as an input device). The augmentation uses a 
second single click, separated with a time threshold (a 1D continuous input, 
discretized into two regions). This augmentation strategy provides a simple unary 
specification system, and can be extended: for example, triple-clicking is used in 
many applications (such as the Firefox browser), and higher numbers are possible. 

Hover help augmentations also use time as the input mechanism. The base action is 
made up of two constraints – that the pointer  (controlled by a 2D-Continuous input 
device) does not move, and that the pointer is located over a help-sensitive object. 
The time augmentation controls the appearance of the help balloon, which pops up if 
the pointer is held motionless for a certain time threshold (a 1D-Discrete action).  

Spring-loaded folders are another 1D-Discrete augmentation using time as the 
input mechanism. Spring loading allows a user to open a folder in a file browser 



without releasing the mouse button, and is an example of the ‘working with your 
hands full’ user task (see §2.4 above) that can be seen in standard file browsers in 
Macintosh OS/X and Windows Vista. The base action is a 2D-Continuous drag 
operation, with the added constraint that the pointer stops over a closed folder icon. 
The augmentation is a 1D-Discrete time threshold (as with hover help); once the 
threshold is reached, the folder under the pointer opens automatically. Using spring-
loaded folders, however, reveals a usability issue when time is used as an extra DoF: 
setting an appropriate time threshold can be difficult, and folders can open too quickly 
(e.g., while the user is still reading the folder name or deciding whether this is the 
correct choice). The problem arises because time does not explicitly indicate user 
intention, and is often used for other purposes (such as reading the folder name). The 
framework’s characterization of this interaction makes it clear that several other 1D-
Discrete input mechanisms could be used instead of a time threshold; thus, the 
usability problem could be solved by using a mechanism that has a more explicit 
action that can be better interpreted as user intention (e.g., a keyboard key, or the 
secondary mouse button). 

4.2 Characterizing Augmentations Proposed in Previous Research 

Here we analyse several augmented interactions that have been proposed or evaluated 
in previous research literature. The framework allows characterization of a wide range 
of different designs, and also allows simple comparison of similar techniques. 

Rate-controlled scroll buttons. Ordinary scroll buttons are widgets that control 
scrolling for a single axis of a document; clicking the button scrolls by one line, and 
holding the button scrolls at a fixed rate. The base action, therefore, is a simple 1D-
Discrete action (selecting the widget with a two-state input device like a mouse 
button). The fixed scroll rate, however, is often not optimal for the user’s task. To 
increase the expressiveness of the control, researchers have proposed augmenting 
scroll buttons to allow the user to control the scroll rate. This involves adding a 1D-
Continuous action to specify the rate. There are several 1D-Continuous input 
mechanisms that can be used for this action: previous researchers have suggested a 
pressure sensor [3,24], but others are also possible, including pointer distance from 
the widget, or dwell time on the widget. 

Combined zooming and scrolling. Researchers have invented techniques for 
controlling scrolling and zooming at the same time. In the OrthoZoom technique [1], 
one dimension of the 2D pointer controls document location (i.e., normal scrolling 
with the scroll thumb), and the other dimension (which is unused during scrolling) 
controls zoom level. In the Zliding technique [25], zooming with a pressure sensor 
augments ordinary scrolling. In these techniques, the base action of scrolling is a 1D-
Continuous action on the scroll-thumb widget, and the augmentation adds a second 
1D-Continuous action (the orthogonal dimension of the pointer or the pressure sensor) 
to control zoom. A third design that combines zooming and scrolling, but one that 
does not put zoom level under user control, is Speed-Dependent Automatic Zooming 
(SDAZ) [15]. In this technique, the zoom level is automatically calculated from the 
scrolling speed; although the augmentation still uses a 1D-Continuous action, there is 
no user control and the manipulation of the DoF happens entirely within the system. 



Pop-through mouse buttons are a hardware augmentation of regular mouse buttons 
[30] that provide a second button click beneath the normal click mechanism. This 
converts a mouse button from a 1D-Discrete input device with two states, to one with 
three states (up, first click, second click). Pop-through buttons provide a novel input 
mechanism to match the addition of a 1D-Discrete action on an existing 1D-Discrete 
mouse-click-based action (such as the augmentation used in spring-loaded folders). 

Bi-manual input. Several researchers have explored techniques that use two hands 
for input. For example, the non-dominant hand can control panning (a 2D-Continuous 
action), while the dominant hand performs detailed operations with the mouse [19]. 
Bimanual panning is an example of an augmentation that happens at the level of the 
workspace itself, and operates as a general capability that can occur along with any 
other operation (i.e., it is not specific to a particular interaction technique or widget).  

Non-speech voice input has been suggested as a way to enrich standard desktop 
interactions. For example, Harada et al demonstrate ‘Voicepen,’ a drawing tool in 
which parameters such as line width or opacity are continuously controlled by the 
pitch or loudness of the user’s voice [11]. The base action in this example (line 
drawing) is a 2D-Continuous action; the augmentations are separate 1D-Continuous 
inputs that control the different line parameters. The motivation for the augmentation 
is to increase the expressivity of standard drawing. This example is a good illustration 
of how the framework can assist designers with the comparison and evaluation of 
novel interactions. In the case of Voicepen, the framework’s characterization suggests 
that the new input modality of non-speech vocalization could be compared to more 
traditional 1D-Continuous input mechanisms such as a slider or a mouse wheel.    

4.3 Characterizing Novel Augmentations 

To show the framework’s value in helping designers explore new regions of design 
space, here we present two novel augmented interactions: one that allows users to 
control the size and detail of object previews, and one that allows users to specify an 
action with different degrees of confidence. 

Variable-size previews. In this example, we show how the framework helped 
identify design opportunities in presenting richer previews (adding a 1D-Continuous 
action to control preview detail). Ordinary web links and icons represent underlying 
data, but do not fully describe it: for example, a file icon shows the type and name of 
a file, but not its contents; hyperlinks show even less, often indicating only that a link 
exists. To provide more information, some kinds of data objects provide previews of 
their content; however, these previews are usually provided at a single fixed size. We 
augmented the preview capabilities of ordinary object selection (a 1D-Discrete base 
action) to provide user control over preview size (Figure 1). This allows the user to 
select how much preview information is appropriate. We implemented this 
augmentation with a pressure-sensitive mouse; as the user presses harder on the 
button, additional detail is provided through a thumbnail image and a status-bar 
display. Pressure is a 1D-Continuous input mechanism, and matches the nature of the 
input action (i.e., requesting variable detail of preview). Other input mechanisms are 
also possible for this augmentation (e.g., a scroll wheel), but pressure maps well to an 
abstract idea like user interest [8], providing a natural mapping for the interaction. 



 

Fig. 1. a) Variable preview of a file folder. b) As pressure increases, thumbnail size increases. 

Rich activations. Our second novel example involves the enrichment of user 
capabilities in a file explorer, through 1D-Discrete augmentations. Some actions in 
GUIs are possibly dangerous, such as opening system folders, or downloading items 
from the web that have been identified as potentially harmful. User preferences and 
system security settings often require that users confirm such activations through a 
confirmation dialog box, or may even require that users activate several menus to 
alter their preferences or security settings. This can result in user frustration, 
especially when a user’s task is interrupted and when objects that the user knows are 
safe have been marked as potentially harmful. We augmented these activation actions 
with a ‘degree of confidence’ parameter that allows users to avoid unneeded 
confirmation dialogs. We used pressure for this new parameter’s input, since pressure 
can be quantized into several different levels, and since (as described above) pressure 
maps well to degree of interest or confidence. With this augmentation, system folders 
can be opened without the dialog if the user applies pressure beyond a fixed threshold 
(Figure 2). Similarly, the user’s confidence in activating web content can be 
communicated to the system through either a hard or a soft press of the mouse button. 

This augmentation can also be applied to drag-and-drop operations (Figure 3). In 
this technique, the user can place content into a folder with a variable degree of 
confidence: for example, a user could drop a music file into a ‘video only’ folder by 
pressing harder before the drop action. 

 

 

Fig. 2. a) A secure folder that requires 
enhanced activation. b) With enough 
pressure, the folder opens. 

Fig. 3. a) The folder is set to only accept image 
files. b) With additional pressure, the icon 
shows that the defaults are overridden. 

 



6. Discussion 

Here we discuss the relationship of our framework to other formalisms and models of 
interface development, and comment on issues related to the design and use of 
augmented interactions more generally. 

First, a number of other models exist for designing and developing interactions, 
including Direct Manipulation [29], Instrumental Interaction [2], and Reality-Based 
Interaction [18]. In addition, formalisms exist for specifying and notating interactions: 
for example, Buxton’s three-state model [6] or the User Action Notation (UAN) [12].  
Our augmented interactions framework is not meant to replace other design models; 
rather it is a tool for comparing and designing interactions that are developed in the 
context of other interaction models. Although we have presented this framework in 
the context of WIMP interfaces, the ideas can easily be applied to other interface-
design paradigms. For example, an interface like CPN/Tools [3] does not include 
scroll bars, pull-down menus, or the notion of selection (instead, it includes a number 
of post-WIMP interactors like toolglasses, marking menus and floating palettes, as 
well as elements of direct manipulation). However, the augmented interactions 
framework could still be employed within this context: toolglasses could include 
multiple modes, or their size could be modifiable with an augmented interaction; 
floating palettes include buttons that could be augmented; and the direct manipulation 
actions in this interface could also be augmented using our approach. 

The main contribution of our framework is that it looks explicitly at the issue of 
augmenting interaction, which extends what other formalisms are intended to do. For 
example, Buxton's three-state model can characterize and notate existing interactions, 
but does not set out what is possible for augmentation. Similarly, UAN is a notation 
for what does occur rather than a specification of what is possible; that is, a statement 
of action with a design rather than specification of the design space for a particular 
interactor. We note, however, that Buxton’s model or UAN could be paired with our 
framework as notation. 

Second, our experiences with augmented interactions suggest several questions 
regarding wider-scale deployment of these new techniques. 

Will input hardware support the new designs? Additional degrees of freedom are 
gradually being added to input devices: scroll wheels are now standard, and 
commercial devices such as the IBM ScrollPoint mouse and the Xbox 360 controller 
support pressure input. Devices like isometric joysticks, pressure sensors, and multi-
touch screens are widely available. As more powerful input devices become more 
readily available, more applications can make use of their capabilities. 

Will new designs break existing interaction styles? One advantage of the 
framework is that it allows an augmentation to be broken into components so that 
designers can consider whether new actions can be supported with existing input 
devices. As shown in the examples, many augmentations can be designed such that 
the original interaction is preserved, and the augmentation can be used optionally (like 
a shortcut) by those who wish to do so. 

Is the framework ‘just for shortcuts’? Although shortcuts are a common 
modification, it is clear from the examples given above that the framework is able to 
characterize more than simply shortcuts. For example, adding rate control to a scroll 
button (a 1D-Continuous augmentation to a 1D-Discrete action) provides a degree of 



control over scrolling that was not possible before; similarly, the ability to represent 
combined actions (such as scrolling and zooming) shows that the framework can help 
designers think about higher-level design ideas such as the integration of different 
kinds of behaviour in the same control. 

7. Conclusions and Future Work 

Augmentations to standard GUI interactions are now becoming common, both in 
research literature and commercial products; however, most augmentations are 
designed in an ad-hoc fashion. We presented a framework for understanding and 
designing augmented GUI interactions that can aid in comparing, evaluating, and 
building GUI augmentations. The framework is able to categorize and describe a wide 
range of previously developed augmented interactions. We also presented 
augmentations that are novel, showing the power of the framework to help in the 
exploration of design space and in the identification of new design opportunities. 

Our work in the area of augmented interactions will continue in three ways. First, 
further development and refinement of the framework will add detail to the basic 
dimensions described here. Second, quantitative evaluations of some of our designs 
will be carried out to measure the benefit of various augmentations and to test the 
comparative power of the framework. Third, we will explore possibilities in toolkit 
support for augmented interactions, so that designers can quickly and easily include 
augmented interactions in new applications, and also retrofit existing systems. 
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