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ABSTRACT 
The ability to recognize emotions is an important part of 
building intelligent computers. Emotionally-aware systems 
would have a rich context from which to make appropriate 
decisions about how to interact with the user or adapt their 
system response. There are two main problems with current 
system approaches for identifying emotions that limit their 
applicability: they can be invasive and can require costly 
equipment. Our solution is to determine user emotion by 
analyzing the rhythm of their typing patterns on a standard 
keyboard. We conducted a field study where we collected 
participants’ keystrokes and their emotional states via self-
reports. From this data, we extracted keystroke features, 
and created classifiers for 15 emotional states. Our top 
results include 2-level classifiers for confidence, hesitance, 
nervousness, relaxation, sadness, and tiredness with 
accuracies ranging from 77 to 88%. In addition, we show 
promise for anger and excitement, with accuracies of 84%. 
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INTRODUCTION 
Despite progress in graphics capabilities and processing 
power, interactive applications still have considerable 
usability problems. One main reason for these problems is 
that applications do not understand or adapt to users’ 
context, such as their location, expertise, or emotional state. 
As a result, applications often act inappropriately: they 
provide inappropriate feedback, interrupt the user at the 
wrong time, and increase frustration. To solve these 
problems, we must make advances in two key areas: first, a 
set of mechanisms for gathering and modeling user context; 

and second, a set of techniques for adapting user interfaces 
and system behavior based on contextual information. 

User context includes information such as the user’s 
location, situation, or expertise, but one often ignored type 
of context that could radically change our computer 
interactions is the user’s emotional state. If a user of a 
safety-critical application was frustrated or distracted, it 
could dangerously affect their performance. If a user of an 
online tutoring system was frustrated or distracted, the 
system could adapt its presentation of learning materials to 
better suit that student’s learning style. For users of 
ordinary computer applications, frustration or distraction 
may not be dangerous, but can lead to increased errors. 
Systems that detect and respond to a user’s emotional state 
could improve user performance as well as satisfaction. In 
addition, emotionally intelligent systems could also aid in 
computer-mediated communication by incorporating the 
user’s emotional state into messages and by allowing users 
to naturally express emotional content to others.  

Many approaches for detecting user emotions have been 
investigated, including voice intonation analysis, facial 
expression analysis, physiological sensors attached to the 
skin, and thermal imaging of the face. Although these 
explorations have seen varying rates of success, they still 
exhibit one or both of two main problems preventing wide-
scale use: they can be intrusive to the user, and can require 
specialized equipment that is expensive and not found in 
typical home or office environments. 

Our solution is to detect users’ emotional states through 
their typing rhythms on the common computer keyboard. 
Called keystroke dynamics, this is an approach from user 
authentication research that shows promise for emotion 
detection in human-computer interaction (HCI). Identifying 
emotional state through keystroke dynamics addresses the 
problems of previous methods by using standard equipment 
that it is also non-intrusive to the user. 

To investigate the efficacy of keystroke dynamics for 
determining emotional state, we conducted a field study 
that gathered keystrokes as users performed their daily 
computer tasks. Using an experience-sampling approach, 
users labeled the data with their level of agreement with 15 
emotional states and provided additional keystrokes by 
typing fixed pieces of text. Our approach allowed users’ 
emotions to emerge naturally with minimal influence from 
our study, or through emotion elicitation techniques.  
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From the raw keystroke data, we extracted a number of 
features derived mainly from key duration (dwell time) and 
key latency (flight time). We then created decision-tree 
classifiers for 15 emotional states, using the derived feature 
set. We successfully modeled six emotional states, 
including confidence, hesitance, nervousness, relaxation, 
sadness, and tiredness, with accuracies ranging from 77.4% 
to 87.8%. We also identify two emotional states (anger and 
excitement) that show potential for future work in this area. 

RELATED WORK 
Modeling affective state using typing rhythms draws from 
two fields: affective computing and keystroke dynamics. 

Affective Computing 
Affective computing refers to “computing that relates to, 
arises from, or deliberately influences emotions” [27]. We 
are interested in identifying a user’s emotional state, so we 
must first consider how emotions are described, and what 
other approaches have been used to classify emotion. The 
terms affect and emotion are often used interchangeably; 
we will use emotional state to refer to the internal dynamics 
(cognitive and physiological) that are present during an 
emotional episode, and emotional experience as what an 
individual perceives of their emotional state [27]. 

Describing Emotions  
Two main approaches have been used to describe emotions: 
categorical and dimensional. The categorical approach 
applies specific labels to different emotional states through 
language (e.g. sadness, fear, joy) [12]. The dimensional 
approach [28] uses two orthogonal axes called arousal and 
valence. Arousal is related to the energy of the feeling and 
is typically described in terms of low (e.g. sleepiness) to 
high (e.g. excitement) arousal. Valence describes the 
pleasure (positive) or displeasure (negative) of a feeling. 
Labels for different emotional states can be represented in 
this two-dimensional space. For example, anger would be a 
high-arousal, low-valence state.  

Sensing Emotional State 
Both the categorical and dimensional models of emotion 
have been used in prior approaches of identifying emotional 
state. Some approaches use features easily discernable by 
other humans, such as facial expressions, gestures, vocal 
intonation, and language [27]. For example, face-tracking 
software is used to analyze facial expressions gathered from 
webcam images to infer users’ affective states [9,26]. This 
approach has been extended to use thermal imaging to 
identify changes in blood flow patterns of the face that are 
synonymous with different facial expressions [22]. 

Other approaches use features that are less discernable to 
other humans, but can be measured by specialized 
equipment. For example, significant research has been 
conducted on measuring physiological changes that occur 
in the body during emotional episodes using sensors such as 
galvanic skin response, electromyography of the face, and 

heart activity (see [14] for an overview). In HCI, 
researchers have used physiological sensors to measure the 
affective state of a user interacting with technology. Results 
have been produced by studying users playing video games 
[24], navigating web pages [32], using video conferencing 
software [33], and using mobile technology [7]. 

The above approaches have two main problems that prevent 
their widespread use: the sensing technology is obtrusive, 
and requires expensive specialized equipment. For example, 
EKG is measured using electrodes attached directly to the 
user’s skin. In some cases, the area where the electrodes are 
placed needs to be shaved to prevent interference [30]. 
Although research is underway to integrate these sensors 
into interaction devices, they are currently intrusive and 
their mere presence may alter the user’s emotional state. In 
[22], a thermal camera is used is measure blood flow to a 
user’s face. Although unobtrusive, the equipment is 
specialized and not found in typical home or office settings. 
To eliminate the need for intrusive and costly equipment, 
we propose to determine affective state via typing rhythms. 

Keystroke Dynamics 
Keystroke dynamics is the study of the unique timing 
patterns in an individual’s typing, and typically includes 
extracting keystroke timing features such as the duration of 
a key press and the time elapsed between key presses.  

Much of the previous research in keystroke dynamics has 
been in authentication systems, with the premise that, just 
as with handwritten signatures, the way that an individual 
types can be unique enough to identify them [21]. The use 
of keystroke dynamics for user authentication has been an 
active area of research, producing many studies 
[3,10,21,25], patents [2], and systems [1], whereby users 
are authenticated by providing the correct user name, 
password, and typing rhythm (see [13] for an overview). 
Anecdotal evidence suggests that strong emotional states 
can interfere with authentication [25]; however, little is 
mentioned of this and it is unclear whether the timing 
variance associated with these emotional states is similar 
between individuals. 

Most of the authentication systems [3,21,25] use fixed-text 
models – that is, they use the same static piece of text 
(entered during authentication) that the model was trained 
on. There have been fewer approaches [10,16,25] that use 
models based on free text (text that is not prescribed to the 
user), as they do not perform as well as fixed-text models 
[25]. The length of the required training text varies between 
different studies; some require a few words [3] or full pages 
of text [15], which can  create better performing models [4]. 

Although fixed-text models generally perform better than 
free-text models, the potential applications of free-text 
models are desirable. Recent work has explored free-text 
models for use in continuous verification, where users are 
continually monitored to identify masqueraders at any time 
(not just during authentication), and have shown potential 
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given enough samples of sufficient length [16]. Free-text 
models have even been able to identify individuals typing 
in different languages [17] as long as the two languages 
have enough similar valid digraphs. Most free-text studies 
require users to enter any ‘valid’ text as sample text [16]; 
however, in [10] keystroke activity was monitored as a 
background process during normal computer use. This 
method had three benefits: the user was less disturbed by 
the collection method, the data was obtained unobtrusively, 
and it reduced the cognitive load on the user by avoiding 
situations where they must think of something to type.  

Classification algorithms for the analysis of keystroke 
dynamics for user authentication include neural networks 
[5], distance measures [21,25], decision trees [29], and 
other statistical methods [3,10,25]. Due to the differences in 
data collection approaches and classification methods, a 
comparison of performance across studies is difficult [3].  

Keystroke Dynamics & Affective Computing 
There has been very little previous work applying keystroke 
dynamics to affective computing. 

Zimmerman et al. [35] describe a method to correlate user 
interactions (keyboard and mouse) with affective state. 
Affective states were induced using films. Physiological 
sensors were used in conjunction with the Self-Assessment 
Manikin (SAM) [23], a method of subjectively expressing 
affective state. The authors found significant differences 
between the neutral state and other emotional states, but 
were unable to distinguish between the induced states. 

Recent work by Vizer et al. [31] used keystroke timing 
features of free text in conjunction with linguistic features 
to identify cognitive and physical stress. They achieved 
correct classifications of 62.5% for physical stress and 75% 
for cognitive stress (for 2 classes), which they state is 
comparable to other affective computing solutions. They 
also state that their solutions should be tested with varying 
typing abilities and keyboards, with varying physical and 
cognitive abilities, and in real-world stressful situations. 

METHODOLOGY 
The two primary components of this work are the data 
collection process and the data processing required to create 
classifications of emotional state. The data collection 
process consisted of gathering and labeling users’ keystroke 
data. The data processing consisted of extracting relevant 
keystroke features to build classifiers.  

Experience Sampling of Emotional Keystroke Data 
We wanted to gather keystroke data in situ – as participants 
performed their daily computer activities – but also needed 
to label each data point with the emotional state of the user. 
To accomplish both of these goals, we used an experience-
sampling methodology (ESM), whereby we periodically 
collect user keystroke data and user responses to emotional 
state questionnaires. In ESM [19], participants are asked to 
record their experiences periodically in real-time during 

their daily activities. The purpose is to gather temporal data 
‘in the moment’ rather than retrospectively, which avoids 
problems of incorrect reconstruction or forgetfulness of the 
user. The drawback is that researchers cannot control or 
balance the different states tested. 

We chose an experience-sampling methodology for two 
reasons. First, we were interested in emotional data 
gathered in the real-world, rather than induced in a 
laboratory setting through emotion-elicitation methods [8]. 
Our results are intended for use in real-world systems, and 
gathering the data for modeling from naturally occurring 
emotions increases our ecological validity. Second, as this 
is a new affect sensing technique, we wanted to explore a 
wide range of emotional states, and emotional induction, in 
the laboratory, is limited to one or two emotional states.  

In experience-sampling studies, users are typically outfitted 
with a signaling device that alerts them to complete a self-
report on their current state and/or situation [19]. We 
developed custom software for our signaling device and 
data collection that participants installed on their personal 
computers for use while they performed their daily tasks. 

Data Collection Software 
The data collection software was written in C# and used a 
low-level windows hook to scan each keystroke as it was 
entered by the user. This program ran in the background, 
gathering keystrokes regardless of the application that was 
currently in focus. The only visible sign that the application 
was running was an icon in the desktop system tray. 

Based on the user’s level of computer activity, the program 
prompted the user throughout their day. At each prompt, the 
user was presented with their keystroke text from the 
previous 10 minutes to review, then with an emotional state 
questionnaire, and then with some fixed text to type. The 
user could opt out of data collection at any time during the 
prompt if they were too busy or did not want to share their 
keystroke data (e.g., contained sensitive information like a 
password). Initial keystroke data was called free text as it 
was not constrained or influenced by our study. 

The emotional state questionnaire contained 15 5-point 
Likert scale questions regarding a user’s current emotional 
state: I am frustrated, I am focused, I am angry, I am happy, 
I feel overwhelmed, I feel confident, I feel hesitant, I feel 
stressed, I feel relaxed, I feel excited, I am distracted, I feel 
bored, I feel sad, I feel nervous, I feel tired. For each 
statement, the user would: strongly disagree, disagree, 
neither agree nor disagree, agree, or strongly agree.  

The user was then asked to enter a randomly selected piece 
of text from Alice’s Adventures in Wonderland [6]; this was 
how we collected the fixed text from users. To prevent 
copying and pasting, the user was unable to select the fixed 
text. The user then had a chance to review what s/he just 
entered before submitting the data remotely to our data 
collection server. The data collection server allowed us to 
preserve participant anonymity and supported remote users. 
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Field Study 
The field study was conducted from July to October, 2009 
with users participating for an average of four weeks. 
Participants installed the software on the computer that they 
used the most. There were no restrictions on their activities 
during the study; they had the freedom to work unimpeded.  

Demographics 
Upon installation of the software, the participant was 
presented with a one-time demographic questionnaire. We 
originally had 26 users take part in the study; however, not 
all participants completed enough study questionnaires to 
be included in the analysis – some completed as few as 2 
over the duration of the experiment. Unlike a laboratory 
experiment, the field study did not allow us to control the 
amount of participation. To determine an informed 
threshold for inclusion in the study, we considered how 
many responses were needed to ensure that users were 
familiar with the study questionnaires and were calibrating 
their responses appropriately. Participants who completed 
more than one questionnaire per day on average for at least 
half of the study duration were likely familiar enough with 
the questionnaires and the process to be considered to have 
finished the study. Thus, we removed users with fewer than 
50 responses, leaving 12 participants. This process occurred 
prior to the analyses and all remaining results are based on 
this reduced dataset. We had 10 male and 2 female users 
aged 24-34 (mean=28.5, s.d.=2.7), who were university 
students (9), admin personnel (2), and technicians (1).  

Overall, participants were proficient with word processing, 
email, and instant messaging applications, with usages of 3-
7 hours a week (3), 1-2 hours a day (2), and more than 2 
hours a day (7). Ten participants indicated they spent at 
least half of their time on the computer that was collecting 
data. Work computers accounted for 8 of the installations 
with the remaining 4 installations on home computers. Most 
participants used desktop computers (10); few used laptops 
(2). One of these installations was on a virtual machine. We 
only included English-speaking participants because we 
focused on English character sequences in the features. 

Feature Extraction 
Once the data was gathered, we needed to transform the 
raw keystroke data files into a feature set that could be used 
as input to models. We extracted three different categories 
of information from the data: keystroke/content features, 
emotional state classes, and additional data points. 

Keystroke Features 
The raw keystroke data consisted of key press and release 
events, unique codes for each key, and a timestamp of when 
the key event occurred. Extensive processing grouped these 
keys into graphs of 2 or 3 symbols. Our keystroke features 
were mainly derived from the timing of single keystrokes as 
well as digraphs (two-letter combinations) and trigraphs 
(three-letter combinations). Initially, we extracted all  key-
specific features (e.g., duration of ‘ie’ digraph); however, 

this caused a number of problems. The number of features 
grew to over 100,000, making training unrealistic and our 
data set very sparse (e.g. one user may use the digraph ‘aa’ 
often and others may not, leading to missing data points). 

To narrow the scope, we used only aggregate features for 
this analysis and removed all key/graph specific features. 
For each feature, we extracted the mean and standard 
deviation because during a sample period, the user could 
enter the same sequence of keys more than once (e.g., 
entering ‘th’ twice during the 10-minute sampling period). 
Keystroke features used in our models are shown in Table 1 
and the categories of features are described further. 

Table 1. Coded keystroke features with descriptions. 

Code Description 
2G_1D2D The duration between 1st and 2nd down keys of the digraphs. 
2G_1Dur The duration of the 1st key of the digraphs. 
2G_1KeyLat Duration between 1st key up and next key down of the digraphs. 
2G_2Dur The duration of the 2nd key of the digraphs. 
2G_Dur The duration of the digraphs from 1st key down to last key up. 
2G_NumEvents The number of key events that were part of the graph. 
3G_1D2D The duration between 1st and 2nd down keys of the trigraphs. 
3G_1Dur The duration of the 1st key of the trigraphs. 
3G_1KeyLat Duration between 1st key up and next key down of trigraphs. 
3G_2D2D The duration between 2nd and 3rd down keys of the trigraphs. 
3G_2Dur The duration of the 2nd key of the trigraphs. 
3G_2KeyLat Duration between 2nd key up and next key down of trigraphs. 
3G_3Dur The duration of the third key of the trigraphs. 
3G_Dur The duration of the trigraphs from 1st key down to last key up. 
3G_NumEvents The number of key events that were part of the graph. 

Keystroke Duration Features (dwell): Keystroke duration 
features have been used extensively in previous keystroke 
dynamics work [3,4,5,17,25]. For our analysis, duration 
features were included for both single key features as well 
as graph features (i.e., digraphs and trigraphs).  

For single keys, the duration was the time elapsed between 
‘key press’ to ‘key release’. Each key of the digraphs were 
extracted separately (e.g. 2G_1Dur was the duration of the 
1st key of all digraphs). Key duration features included 
2G_1Dur, 2G_2Dur, 3G_1Dur, and 3G_2Dur in Table 1.0. 
For graph duration features (2G_Dur and 3G_Dur), 
duration was measured as the time elapsed from the first 
‘key press’ event to the last key’s ‘key release’ event. For 
example, for the digraph ‘the’ the 3G_Dur would be the 
time from the ‘t’ press event to the ‘e’ release event. 

Keystroke Latency Features (flight): Keystroke latency 
features have been used in previous keystroke dynamics 
studies in authentication [3,5,25]. Keystroke latency is the 
time elapsed from one key release event to the next key 
press event or the ‘time between keys’. Unlike the duration 
features, latency always involves two keys so there are no 
single key latency features. Our keystroke latency features 
(2G_1KeyLat, 3G_1KeyLat, 3G_2KeyLat) were separated 
for each pair of keys found in the graph. 

Other Keystroke Features: We included features that 
combined some aspects of the duration and latency features. 
This included the “key down to down” features (2G_1D2D, 
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3G_1D2D, 3G_2D2D), which contain the elapsed time 
from the first key down to the next key down event. 

We calculated the number of events that were found in each 
digraph and trigraph (2G_NumEvents, 3G_NumEvents). 
Although most digraphs contain 4 events (first key press, 
first key release, second key press, second key release) and 
trigraphs contain 6, there are scenarios where the user could 
type more. For example, a user could press keys in quick 
succession and release them out of order (e.g. 1st key press, 
2nd key press, 1st key release, 3rd key press, 2nd key release). 
This would result in 5 key events in a digraph. This may be 
indicative of a user’s emotional state, and has not been used 
previously in keystroke dynamics, to our knowledge.  

Keystroke Feature Overlap: Some of the keystroke features 
that we described overlap slightly; however, in the 
classification section, we describe how we reduced this set 
using supervised attribute selection. 

Content Features 
We included a few features based on the content extracted 
(text) from the free keystrokes, including separate features 
for the number of characters, numbers, punctuation marks, 
uppercase characters, and the number and percentage of 
‘special characters’ (numbers, uppercase characters, 
punctuation marks). These features were used in only the 
free text models as we provided the fixed text to the user. 

The number of mistakes (backspace + delete key) was 
calculated for both fixed and free text models. There are 
many different ways to correct mistakes (e.g., selection 
with the mouse and replacement with keystrokes). It was 
not possible to catch all of the possible correction scenarios 
as keystrokes were collected from different applications 
that we did not control. However, this feature does give a 
general idea of the number of mistakes being made. 

Emotional State Classes 
All of our features needed to be labeled with the user’s 
emotional state for classification. We used discrete emotion 
categories to collect emotional state responses from users 
because these categories are close to the language 
commonly used to describe their emotional state.  

As mentioned, we collected Likert Scale responses for 15 
emotional states (e.g. "I feel stressed”). The available 
options that were presented for each statement (strongly 
disagree, disagree, neither agree nor disagree, agree, 
strongly agree) became the target classes during 
classification. Many users avoided the ‘extreme’ categories 
of the 5-point scale, resulting in highly under-represented 

classes (class skew). We grouped the ‘strongly agree’ and 
‘strongly disagree’ categories with the ‘agree’ and 
‘disagree’ categories respectfully, resulting in 3 classes for 
each emotional state: agree, neutral, and disagree. 

Additional Data Points 
We extracted a number of additional data points to assist in 
our analysis, including the active process name for each 
collected keystroke, which would allow us to analyze our 
data set differentially depending on application.  

Additional Data Processing 
Our keystroke feature extraction did not take into account 
large pauses in typing, when a user might have switched to 
another mode of input (e.g. mouse) or have taken a break 
from the computer. To remove these pauses, we calculated 
outliers for all of the features that involved multiple keys 
(e.g. digraph latency). Outliers were removed by calculating 
the mean and standard deviation for all keystroke timing 
features for each participant and then removing the samples 
that were 12 standard deviations greater than the mean for 
that participant. A large number of standard deviations were 
used to only remove trials where very long pauses were 
present. We then recalculated all of the features with the 
filtered instance set. This resulted in the removal of 0.07% 
of the samples collected. This method of outlier removal 
was similar to the approach taken in [21]. All values were 
normalized for each user to facilitate the aggregate analysis.  

CLASSIFICATION 
Due to the large variations in the number of responses per 
user, we did not create user-specific models, but aggregated 
the data across participants for 1129 valid instances. 
Models were created using the C4.5 supervised machine 
learning algorithm as it is implemented in Weka [34]. 

Although there are many classification algorithms, we used 
decision trees as a simple low-cost solution to investigate 
this new approach to identifying emotion. Decision trees 
can be reduced into a set of rules and allow generalization 
(e.g. pruning). The chosen decision tree algorithm also 
handles missing values, which we have in our data set. 

Supervised Attribute Selection 
Although we identified 31 fixed text features and 37 free 
text features, we needed to first identify which of these 
features were important to keep and which had little 
predictive value. We used the correlation-based feature 
subset attribute selection method described by Hall in [18] 
and implemented in Weka [34] to select salient features in 
our set for each emotional state model separately.  

 
Figure 1. Distribution of responses (classes) before under-sampling (faded) and after. 
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Model Variations 
We trained a number of model variations using different 
text types (i.e., free and fixed text), numbers of target 
classes, and adjustments to compensate for class skew.  

In addition to the 3 class-level (agree, neutral, disagree) 
variations explained in the Feature Extraction section, we 
included variations that had 2 class-levels (agree, disagree), 
removing instances in the neutral category to determine if 
keystrokes could differentiate between two opposing states.  

Responses were not distributed evenly across all levels of 
each emotional state (see Figure 1). For example, the 
responses to the phrase, “I am angry” were skewed to the 
strongly disagree and disagree categories. This is expected 
as users generally would not be very angry as often as not at 
all angry. Class skew such as this can lead to unreliable 
classification rates. To eliminate class skew, we used a 
method called under-sampling [11], which randomly 
removes instances from the majority classes to equal the 
class with the fewest instances, creating a uniform 
distribution (see Figure 1). We included models built using 
under-sampling and the original distribution. For each 
emotional state model that used under-sampling, we 
repeated the classification process 10 times and report the 
mean classification accuracy and variance.  

Evaluation 
We used 10-fold cross-validation from the stratified 
training results to evaluate our models, which is standard 
practice when the data set’s size is limited [34].  

To more easily describe our top results, we defined a 
hierarchy of evaluation categories: Bronze, Silver, Gold, 
and Platinum (see Table 2). Each category is based on the 
classification rates and the top three also incorporate false 
positive rate. To be considered for one of our categories, the 
sample-to-feature ratio had to be greater than 10. During the 
creation of the different model variations, instances were 
sometimes removed (e.g., instances of the majority classes 
were removed in under-sampling). In classifier design, it is 
generally accepted that there must be 10 times more 
instances (training samples) per class than the number of 
features [20]. Another criterion for inclusion was that the 
Kappa statistic had to be greater than 0.4. The Kappa 
statistic indicates how much the classification rate was a 
true reflection of the model or how much could be 
attributed to chance alone; Kappa values range from 0 
(chance agreement) to 1 (perfect agreement) [34]. 

Type Description 
Bronze Overall classification rate > 75%. 
Silver TP rates > 75%, FP rates < 25% for each class. 
Gold TP rates > 80%, FP rates < 20% for each class. 
Platinum TP rates > 85%, FP rates < 15% for each class. 

Table 2. Evaluation categories used to describe the results.  

RESULTS 
We gathered both fixed text and free text data and created 
separate models for each of these data types. We are 

presenting the results of only the fixed text models as there 
were no free text models that made our top evaluation 
categories. For performance of the free text models, see 
[13]; in the discussion of this paper, we discuss potential 
improvement to the free text models. After removal of 
participants with fewer than 50 responses, the number of 
samples collected per participant ranged from 51 to 219 
(mean=94.1, s.d.= 52.7).  

Top Emotional State Models 
Figure 2 shows the classification rates for our top-
performing emotional state models. These top-performing 
models are all two-class models (agree and disagree), and 
perform appreciably better than chance (50%). 
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Figure 2. Classification rates for our top-performing models. 

Light bars show how our models improve upon random 
classification (chance). Error bars represent the variance in 

the classification rates after 10 random samplings. 

We were very conservative in categorizing models as top-
performing, to limit models to those with high classification 
rates, but also with little or no class skew, low false positive 
rates, high samples-to-features ratios, and high kappa 
values. We considered models that achieved our top 3 
evaluation categories as our top emotional state models. 
Table 3 shows the results using 10-fold cross-validation. 
The Bronze category is not included because it was 
susceptible to class skew as it only looked at overall 
classification rates and not classification rates for individual 
class levels. Models in the Bronze category are presented in 
the next section as they show potential for future study. 

Our top results were all based on 2 class levels (agree and 
disagree) and most of them used under-sampling. This 
means that these models were built using a reduced data set 
(reduced initially by removing the neutral category and 
further during under-sampling). Despite this reduction, we 
are still achieving satisfactory samples to features ratios 
(N:M) as seen in Table 3. N:M ranges from 11 to 49 with 
the most samples being used by the ‘tired’ model that used 
the original distribution of data (i.e., no under-sampling). 

For 7 of the 8 top results in Table 3, under-sampling was 
used, and the correctly classified rate (CC) and Kappa 
statistic show averages from the 10 random-samplings 
models that were used during under-sampling. The variance 
columns in Table 3 (CC Var, Kap Var) indicate the 
variance from these 10 random samplings models. The 
‘tired’ and ‘relaxation’ models have the lowest variance in 
both the classification rate and the Kappa statistic, and also 
have the highest sample-to-feature ratio, which may suggest 
that the variance can be lowered for the other emotional 
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state models given additional samples. Lower variance in 
the classification rates would suggest that the model results 
are truer indications of the predictive power of keystroke 
dynamics for emotional state detection. 

When considering all of the factors (under-sampling, 
variance, sample-size) for the models in Table 3, the ‘tired’ 
model performs the best. The original distribution of 
responses for the ‘tired’ query was more balanced than the 
other emotional states (see Figure 1). This resulted in two 
‘tired’ models reaching our top results, one using under-
sampling and the other using the original distribution. 
These two models are quite similar, with similar numbers of 
instances, classification rates, and Kappa statistics. 

Emotional State Models with Potential 
As mentioned in the previous section, we considered 
emotional state models that made it to our Bronze category 
as emotional states with potential for future study, rather 
than as top-performing classifiers. This is because these 
models exhibited uneven distributions (class skew), which 
can lead to artificially-inflated classification rates. Each of 
the Bronze models in Table 4 are from unbalanced data. 

Each emotional state from our top results in Table 3 also 
appeared in the Bronze category with an unbalanced 
version (no under-sampling), except for the tired state, 
which had an unbalanced version in Table 3. In addition, 
there were new representations from the ‘excitement’ and 
‘anger’ emotional states. As Table 4 shows, classification 
rates were high; however, these models are also highly 
skewed. For example, the 2-state excitement model has an 
overall classification rate of 84.3%; however, when looking 
at the individual true/false positives for agree and disagree, 
we see that the ‘disagree’ class has a 92.7% classification 
rate whereas the ‘agree’ class has only 56.9%. Also, the 
‘disagree’ class has 87.5% of the total number of samples. 
The same pattern exists for the anger emotional state. 

It makes sense why such class skew exists in both of the 
anger and excitement states. These states have very high 
activation; it would be unusual for someone to be in a 
heightened state of anger or excitement for extended 
periods of time over the course of a normal workday. 
Because of the class skew for these two states, there were 
not enough instances remaining after under-sampling for 
these models to achieve our top-performing categories (see 
Figure 2). However, the high classification rates show that 

anger and excitement should not be ruled out as candidates 
for keystroke-based emotion modeling simply because of 
class skew in our particular data set. Future studies on these 
emotional states should consider using a laboratory-based 
emotion-elicitation method [8] rather than a field study. 

Selected Features 
Among the top emotional state models, the number of 
features were reduced from 31 (fixed text) to an average of 
7.4 (s.d.=2.1). Using the correlation-based feature subset 
attribute selection method [18] allowed us to increase the 
sample-to-feature ratio with minimal loss to the 
classification rate. Table 5 lists the features that were used 
for each of the top classifiers (see Table 1 for a description 
of each feature). These features contain a fairly even 
number of both key latency and duration features with the 
2G_1KeyLat_Mean and 2G_2Dur_Mean used in most of 
the models. Features that were not used in any of the 
models include the means of 3G_2Dur, 2G_Dur, and 
3G_2KeyLat as well as the standard deviations of 
2G_1D2D, 2G_1KeyLat, 2G_Dur, 3G_1D2D, 3G_1Dur, 
3G_1KeyLat, 3G_2D2D, 3G_3Dur, 3G_Dur as well as our 
content features (NumMistakes).  

 Feature C H N R S T 
2G_1D2D_Mean X   X  X 
2G_1Dur_Mean   X  X X 
2G_1Dur_Std       X 
2G_1KeyLat_Mean X X X X X  
2G_2Dur_Mean X X X X X X 
2G_2Dur_Std  X  X   
2G_NumEvents_Mean X   X  X 
2G_NumEvents_Std X X   X  
3G_1D2D_Mean X X  X  X 
3G_1Dur_Mean  X      
3G_1KeyLat_Mean   X X    
3G_2D2D_Mean  X     X 
3G_2Dur_Std   X     
3G_2KeyLat_Std    X   
3G_3Dur_Mean   X     
3G_Dur_Mean       X 
3G_NumEvents_Mean    X    
3G_NumEvents_Std  X  X  X 

Table 5. Features selected for each top emotional state model. 
C=Confidence, H=Hesitance, N=Nervousness, R=Relaxation, 

S=Sadness, T=Tired. 

State CC CC Var Kap Kap Var M N N:M Silv Gold Plat 
Confidence 83.0 6.74 0.66 0.0027 8 286 18 X X  
Hesitance 81.9 7.69 0.64 0.0031 9 204 11 X X  
Nervousness 83.3 5.60 0.67 0.0022 5 152 15 X X  
Relaxation 77.4 2.33 0.55 0.0009 8 442 28 X   
Sadness 87.8 6.52 0.76 0.0026 4 156 20 X X X 
Tired 84.1 0.47 0.68 0.0002 9 758 42 X X  
Tired* 85.1 0.00 0.70 0.0000 9 861 48 X X  
Table 4. Top 3 evaluation category results. CC = correctly 
classified rate, Var = variance, Kap = Kappa statistic, M = 
#features used, N = #samples used, * = no under-sampling 

State CL CC Kap D  TP D  FP N  TP N  FP A  TP A  FP 
Anger 3 83.9 0.53 92.0 38.4 64.6 9.2 0.0 0.0 
Confidence 2 86.2 0.63 69.9 8.3 n/a n/a 91.7 30.1 
Excitement 2 84.3 0.53 92.7 43.3 n/a n/a 56.7 7.3 
Hesitance 2 92.3 0.67 94.9 25.5 n/a n/a 74.5 5.1 
Hesitance 3 76.3 0.55 86.9 26.9 63.3 10.4 48.0 6.5 
Nervousness 2 93.0 0.52 96.9 48.7 n/a n/a 51.3 3.1 
Nervousness 3 81.6 0.51 95.2 40.7 46.5 5.4 38.2 3.4 
Relaxation 2 78.9 0.56 82.4 26.2 n/a n/a 73.8 17.6 
Sadness 2 93.8 0.55 97.9 50.0 n/a n/a 50.0 2.1 
Sadness 3 82.9 0.55 93.8 33.3 56.0 6.2 35.9 3.9 

Table 3. Emotional state models in the Bronze category. 
CL = class-level, CC = correctly classified rate, Var = 

variance, Kap = Kappa statistic, D = disagree, N = neutral, 
A = agree, TP = true-positive, FP = false-positive. 
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DISCUSSION 
Our results show that keystroke dynamics can accurately 
classify at least two levels of seven emotional states 
(confidence, hesitance, nervousness, relaxation, sadness, 
and tired). In addition, we identified two other emotional 
states (anger, excitement) that have potential for keystroke-
based classification. In this section, we discuss the benefits 
and drawbacks of using experience-sampling, the use of 
fixed text versus free text in keystroke-based modeling, 
aggregate versus individual analyses, the limitations of our 
data set, and opportunities for extensions to our work. 

Experience-Sampling for Emotion Modeling 
One of the goals of our research was to fill the gap in the 
related literature on the real-world applicability of affective 
computing solutions. Our choice to use keystroke dynamics 
was partly guided by this goal to create classifiers that are 
unobtrusive and inexpensive enough to be deployed in 
users’ homes or workplaces. Experience-sampling allowed 
us to focus on the eventual application of our keystroke-
based approach. Users’ emotional states emerged naturally 
as compared to emotion-elicitation experiments [8]. 

Experience-sampling also provided us with the opportunity 
to perform exploratory research in this new field. Before 
our study, there was no guidance on which emotional states 
might be identifiable using keystrokes; experience-
sampling allowed us to take a broad approach to the 
problem and narrow down which emotional states we 
should target with future work. This broad approach would 
be unfeasible using emotion elicitation because participants 
would have to be induced into each emotional state (neutral 
states as well) in individual experiments. In addition, mood 
induction does not necessarily work on all participants. 
Collecting data using experience-sampling and remote data 
submission allowed us to collect labeled emotional state 
data with minimal administration overhead. 

However, experience-sampling introduced some drawbacks 
with implications for our analyses. Due to the uncontrolled 
nature of this methodology, we could not balance the 
distribution of classes for each emotional state, which led to 
class skew in the data. These uneven distributions limited 
our interpretation of the results for unbalanced models, and 
limited the number of instances available for our balanced 
models that used under-sampling.  

Despite this disadvantage, we feel that experience-sampling 
provides a data-collection methodology that can be 
beneficial when studying a wide range of naturally-
emerging emotions in new areas of research. 

Free Text Models 
Our free text models did not perform well enough to 
achieve our top evaluation categories and were not included 
in the results section. We believe that this was due to setting 
the user activity threshold too low. A low activity threshold 
caused the questionnaire to be presented to the user with 
fewer free text keystrokes than needed for analysis. 

Although the mean number of collected keystrokes were 
similar between the free (169) and fixed text (166), the 
standard deviation for the free text was quite high (302.8). 
A high standard deviation implies that some samples had 
very few free text keystrokes whereas the fixed text 
remained relatively consistent. Future studies should ensure 
that enough free text data is collected.  

Aggregated versus Individual Participant Analyses 
We created emotional state models for the entire data set 
across all participants to maximize the number of samples, 
especially in the under-sampled versions of the models. 
Creating models at the level of individual participants was 
not viable due to the number of collected samples with 
which to work. The mean number of samples per 
participant was 94.1, and this number would have been 
reduced when adjusting for class skew using under-
sampling and in 2 class-level models. Having so few 
instances would have caused our sample to feature ratio to 
be too small and our results to be less accurate and reliable. 

However, we do not know whether there are large 
individual differences in how keystroke dynamics change 
with emotional state. With enough samples per participant, 
personalized models could improve our classification rates. 
The success of keystroke dynamics for user authentication 
is based on the fact that each person’s typing rhythm is 
unique enough to identify them. This suggests that 
individuals might have unique keystroke-level reactions to 
different emotional states. For example, when stressed, 
some individuals may type faster and other may pause in 
their typing more frequently. Accounting for these personal 
differences may allow us to build better performing models. 

Limitations of our Data Set 
We took care to ensure that we did not artificially inflate 
our classification rates by ignoring the two main limitations 
of our data set: its limited size and its uneven distribution.  

Half of the participants in our study submitted fewer than 
50 samples over the course of 4 weeks. For ethical reasons, 
we allowed participants to opt out of submitting data for 
each sample, but we tried to encourage participation 
through the use of data-based incentives (for each week that 
users submitted at least 15 samples, they were entered into 
a draw for a cash prize). After including only the active 
participants (more than 50 total samples), we had 1129 
samples over all participants. This total was further reduced 
in the 2 class-level models though the elimination of the 
neutral category and in the under-sampled models by 
balancing the samples per class. In future work, we would 
prefer larger data sets with enough samples to perform 
individual-level models. Collecting user data for a longer 
time period and providing better incentives for active 
participation would increase our data set size. 

The second problem with our data set was unequal 
distributions of responses across some of the emotional 
states. This is understandable as our feelings over the 
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course of the day are not evenly distributed. To address this 
problem of class skew, we used under-sampling, which 
reduced our data set size. In our field study software, we 
prompted the user at random times to fill out the 
experience-sampling questionnaire. We also allowed them 
to select the questionnaire explicitly if they wanted to 
submit their data. Coaching participants to use this explicit 
submit feature when they were experiencing low-frequency 
emotions like anger could help improve the distribution of 
responses. With the preliminary models provided by our 
work, we could deploy an adaptive version of the software 
that conducts modeling in the background and prompts the 
experience-sampling questionnaire when it detects that the 
user might be in a low-frequency emotional state. 

Opportunities for Future Work 
Our work is the first to classify a broad range of emotional 
states using typing rhythms. We have demonstrated the 
efficacy of this technique, which opens up opportunities for 
future research to refine, improve, and utilize this approach. 

Because of our limited data set, we used all of the available 
samples in our models. Filtering the samples based on the 
application context could improve classification rates. For 
example, the keystroke dynamics gathered using word 
processing software are likely different than when writing 
code in an integrated development environment. Samples 
could be filtered based on the application that was active 
during each keystroke entered, which would allow for 
application-specific models. Although we did not filter 
samples based on the active application, our software did 
collect this information in anticipation of future analysis. In 
addition, we would like to investigate how models 
personalized to individual users change classification rates, 
as described in the section on aggregated analysis.  

When selecting our features, we used only generalized 
features, such as the flight time between two keys in a 
digraph. We could also investigate specific features, such as 
the flight time between two keys in a specific digraph (e.g., 
‘th’), or a number of specific digraphs (e.g., the 20 most 
common digraphs in the English language). We calculated 
these features from our raw data [13], but due to our data 
set size, we focused on the general features. 

Rather than use individual features in a model directly, 
feature aggregation through an approach like Principle 
Component Analysis (PCA) could be used. We investigated 
using PCA to select and aggregate features, but found that 
this process did not improve overall classification rates 
[13]. In addition, the resulting decision trees were difficult 
to interpret due to the feature aggregation. We could also 
use aggregation of the target classes to improve our results. 
Informal analysis of the 15 emotional states found many 
correlations. Combining the co-varying states could 
improve classification rates and the potential application. 

Adding other interaction-based features could improve 
classification. Adding linguistic features as model attributes 

(similar to [31]) is an approach that could be applied to the 
free-text models (fixed text and the resulting linguistic 
features is, by definition, prescribed). Adding low-level 
features based on mouse kinematics might also improve 
classification. In addition, using a multi-modal approach 
could provide better generalization of the models to 
different computer-based tasks that require varying amounts 
of typing or aiming. Our software collected linguistic data 
and mouse kinematics, in anticipation of future analysis. 
We could also combine our approach with established 
methods (e.g., physiological models) for a more complete 
and robust model of user experience. 

We used our own custom questionnaire to take a broad 
approach to collecting a variety of user states. Using a 
validated emotional state scale [8] would provide additional 
validity to the keystroke dynamics approach. Also, 
distinguishing between different emotions rather than levels 
of a single emotion would be beneficial. 

Finally, although we used decision trees as our 
classification algorithm, there are other machine learning 
algorithms (e.g. support vector machines) that might 
provide better-performing classifiers. 

CONCLUSION 
The ability to recognize emotions is an important part of 
building intelligent computers. Systems that could extract 
the emotional aspects of a situation would have a rich 
context from which to make appropriate decisions about 
how to interact with the user or adapt their system response. 
There are two main problems with current approaches for 
identifying emotions that limit their applicability: they can 
be  invasive and may require expensive equipment. We 
presented a solution that determines user emotion by 
analyzing the rhythm of users’ typing patterns on a standard 
keyboard. To gather emotionally-labeled data, we 
conducted a field study where participants’ keystrokes were 
collected and their emotional states were recorded via self 
report using an experience-sampling methodology. From 
this data, we extracted keystroke features, and reduced our 
feature set using correlation-based feature subset attribute 
selection. We created classifiers for 15 emotional states.  

Our top results include 2-level classifiers for confidence, 
hesitance, nervousness, relaxation, sadness, and tiredness 
with accuracies ranging from 77.4 to 87.8%. In addition, 
our results show promise for anger and excitement, with 
accuracies of 84%. This work presents the first use of 
naturally-gathered typing rhythms to identify the emotional 
state of a computer user, and the first method of sensing a 
variety of emotional states unobtrusively and inexpensively. 
This work is important as it moves us closer to creating 
emotionally-aware computers that can be widely deployed. 
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