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Abstract. In research, influence is often synonymous with importance;
the researcher that is judged to be influential is often chosen for the
grants, distinctions and promotions that serve as fuel for research pro-
grams. The influence of a researcher is often measured by how often he or
she is cited, yet as a measure of influence, we show that citation frequency
is only weakly correlated with influence ratings collected from peers. In
this paper, we use machine learning to enable a new system that provides
a better measure of researcher influence. This system predicts the influ-
ence of one researcher on another via a range of novel social, linguistic,
psychological, and bibliometric features. To collect data for training and
testing this approach, we conducted a survey of 74 researchers in the
field of computational linguistics, and collected thousands of influence
ratings. Our results on this data show that our approach significantly
outperforms measures based on citations alone, improving prediction ac-
curacy by 56%. We also perform a detailed analysis of the key features in
our model, and make some important observations about the scientific
and non-scientific factors that most predict researcher influence.

1 Introduction

This paper is concerned with understanding and quantifying researcher influence.
We define influence as the capacity of a researcher to have an effect on another
researcher’s opinions, ideas, experimental approach, or choice of research topics.

Studying influence is important. Knowing about influential individuals can
helps us understand how behaviours spread [1], and inform technology such as
paper recommendation systems [2]. Also, since measures of influence are used
to evaluate research, better measures of influence could help us make better
strategic decisions, improving processes ranging from hiring, funding, promotion,
and award-giving, to the assessment of organizations and funding programs.

Both quantitative and qualitative factors are commonly used to assess re-
searcher influence. Quantitative measures based on citation counts, such as the h-
index [3], provide a convenient and objective indicator of influence. But are these
measures reliable? While citations “are correlated with other assessments of sci-
entists’ impact or influence, such as awards, honors, and Nobel laureateships,” [4]
citation-based measures are less useful in fields with “less heavy citation traffic”
and are susceptible to manipulation [5]. Alternatively, qualitative assessments



(e.g. recommendation letters) can be more reliable, but are time-consuming and
subjective. Our aim is to develop an improved measure of researcher influence
that can account for both quantitative and qualitative information, based on
both scientific and non-scientific (social, psychological) factors.

Our main contribution is a learned model that predicts, for a pair of re-
searchers, the influence that one researcher has on another. Formally, this model
treats influence as function Infl(x, y)→ [0,∞): the influence of researcher x on
researcher y, expressed as a non-negative real number. It is possible to aggregate
these predictions in order to develop measures of total influence, but in this work
we focus on pairwise, directed influence as a first step toward global models.

We train and test our approach within the scientific domain of computational
linguistics. We first extracted a dataset of researchers from the information avail-
able through the ACL Anthology Network (Sec. 2) (derived from publications of
the Association for Computational Linguistics). We then used the ACL data to
build individual scientific social networks for the ACL authors; we elaborate on
this concept in Sec. 3. Next, we solicited researchers to perform an online survey
where they can select those members of their scientific networks that most in-
fluence them; respondents provided high-quality ratings (Sec. 4). We then used
these ratings to train the influence model using techniques from supervised ma-
chine learning (Sec. 5). The heart of our model is a creative set of features (Sec. 6)
that enables dramatic improvements in the prediction of influence, substantially
improving accuracy over baselines based on citation counts alone (Sec. 8). In
our results, we also provide an instructive analysis of what factors most affect
influence. Overall, this paper provides important new tools, ideas, and directions
for work at the intersection of machine learning and bibliometrics.

2 The ACL Anthology Network

To compute our function Infl(x, y), we require information about researchers
x and y and their relationship to one another. In this paper, we extract this
information for researchers in the field of computational linguistics. We selected
this field partly because of the availability of the ACL Anthology Network or
AAN [6]. The AAN comprises a majority of worldwide papers in computational
linguistics since the 1960s. The 2012 release of the AAN provides 20K full-text
papers and 95K paper citations. Note, however, that these citations only include
citations to other papers in the AAN. Each author is associated with a unique
ID, from which we can trace citations and co-authorships within the AAN.

3 Building Scientific Social Networks

While the domain of Infl(x, y) could comprise all pairs of researchers, if we define
Infl(x, y) in terms of how often y cites x then, by definition, y is only influenced
by the set of researchers {x} whom y has cited. Rather than restrict our analysis
to the set of citing researchers, we expand the set of researchers that might
influence y to a group we call y’s scientific social network.



A researcher x is part of y’s scientific social network if and only if:

1. y cites a paper authored by x (y’s citation network)
2. x is a co-author of y (y’s degree-1 network)
3. x and y share a co-author (y’s degree-2 network)
4. x is among y’s most-similar authors by paper content (y’s topic network)

We calculate the author similarity using a vector-space approach [7]. We first
build tf-idf vectors for each author from the combined text of all their papers. We
took steps to exclude names, affiliations, references, stopwords, and infrequent
terms. We compute the similarity between two authors by computing the cosine
similarity between their tf-idf vectors. y’s topic network comprises y’s 50 most
similar authors, provided the cosine values exceed a minimum threshold (.06).

The average network size is 90.3 people, which includes overlapping contri-
butions of, on average, 6 people via the degree-1 network, 52 people via degree-2,
32 via citations and 47 via topic similarity.

4 A Researcher-Specific Survey of Scientific Influence

To train and test our influence model, we require a gold standard set of influence
ratings. The gold standard in bibliometrics has long been direct peer assessment
[8, 5]. We used a survey to obtain peer assessments of the researchers within our
data. We took steps to safeguard the confidentiality of the responses and our
methodology received ethical approval from our institution.

Respondents (users) clicked on a hyperlink that took them to an online form
(Fig. 1). The screens were customized for each user, with 11 clickable names
randomly drawn from that user’s scientific social network. Eleven names were
chosen as a reasonably large number that could still fit on one screen without
the need to scroll. Users were instructed to “click on the researcher... who has
most affected your personal opinions, ideas, experimental approach or choice of
research topics.” The task of selecting a single name, as opposed to ranking or
ordering the names, was chosen both to make the task easy for the users, and
because such choices can still imply a global influence ranking (Sec. 5). When
a name is clicked, the selected name and the 10 unselected ones are recorded,
and a new set of names is randomly chosen. While users have the option of
skipping screens, one user reported that making one choice “sent me into a deep
introspective philosophical debate that I will likely be weeks recovering from.”

114 researchers were contacted and 74 responded, resulting in a response rate
of 65.5%. Users completed 40 screens on average (2957 in total). 86% of users
were male, while 76% were from North America. The users ranged from new
researchers to those who have been publishing for several decades, and included
10 students, 9 postdocs, 34 professors/government scientists, and 21 in industry.

Survey reliability One measure of response quality is how often users contradict
themselves, i.e., how often they rate researcher A higher than researcher B on one
screen and then B higher than A on another. Because the average user completed
40 screens and had 90 people in their network, there were many chances to do



Click on the researcher below who has influenced you more than the others. In other words, select the
researcher below who has most affected your personal opinions, ideas, experimental approach or choice of
research topics. You may also skip this one.

Oren Tsur  Author profile

Anders Søgaard  Author profile

Girighar Kumaran  Author profile

Omar F. Zaidan  Author profile

Philip Resnik  Author profile

Catherine Hill  Author profile

Pascale Fung  Author profile

Byung-Gyu Ahn  Author profile

Kenneth Ward Church  Author profile

Melanie J. Martin  Author profile

Erik F. Tjong Kim Sang  Author profile

Another form with a new group of researchers will be generated automatically after clicking. Please complete as
many as you can (spending 10-15 minutes in total would be great!) -- but quit whenever you would like.

Quit

Fig. 1. Screenshot of online survey form. Clicking on the ’Author profile’ links will
open the selected author’s profile on the AAN website, providing information about
the author’s publications, affiliations, collaborators, etc.

this. However, we found that of all the thousands of ratings, only one user did
this three times, while five other users did this only once.

Another indicator of response quality is the pattern of how frequently each
name in the form is clicked, by position on the screen. Because the names are
ordered randomly, the null hypothesis is that the clicks would be evenly dis-
tributed, with roughly the same number of clicks on names presented in the first
position as those in the second, third, etc. The alternative hypothesis is that users
click names in the first half significantly more than those in the bottom, since
they read from top to bottom and may not bother to read all the names. While
the clicks were fairly evenly distributed (Fig. 2), a one-tailed binomial test shows
that users click on names in the top half significantly more (p=0.024). But since
the names are randomly drawn, this behaviour results in random noise. Nev-
ertheless, we are considering ways to account for and model this behaviour as
part of our training algorithm. We also investigated if users were more likely to
click on a name close to where they clicked on the previous screen. Again, any
effect here would be noise rather than systematic bias. However, the observed
next-click distribution closely tracked the expected distribution (Fig. 3).

Altogether, these analyses show the users did an excellent job on the surveys.
However, there is some noise in the ratings, and while our training algorithm
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tance from previous click on screen.

(described in the following section) is robust to such effects, there is clearly an
upper bound to the accuracy achievable on our test data.

5 An SVM Ranking Approach to Influence Prediction

While peer assessment ratings have typically been used to evaluate citation-based
metrics [8, 5], here we use our peer assessments to train a model of influence.

Formally, this model expresses the influence of researcher x on researcher y
as a function Infl(x, y) → [0,∞). We model Infl(x, y) using a linear function,
Infl(x, y) = w · f(x, y), where w = (w1, w2 . . . wN ) are the parameters of the
model: the N weights chosen by the machine learning algorithm during train-
ing. The function f(x, y) = (f1(x, y), f2(x, y) . . . fN (x, y)) is an N -dimensional
feature function that describes the relationship between researcher x and y. The
particular binary and real-valued features that we use are described in Sec. 6.

Our survey was designed to provide us with relative influence ratings for
learning the weights of the Infl(x, y) model. When a user y selects the kth
researcher, xk, from the set of 11 researchers, {xi}, the user is indicating that this
kth researcher was more influential than the others presented in that set. This
implies relative preference rankings, Infl(xk, y) > Infl(xi, y),∀i 6= k. Ten such
preferences are implied for each screen, and with roughly 3000 screens completed
by our survey respondents, we obtain close to 30,000 implied preferences.

Our training algorithm has the basic goal of finding the set of weights, w,
that can satisfy as many of these preferences as possible. Joachims [9] describes
the similar problem of optimizing a ranking function for search engines, via the
preferences implied by click-through data. We follow Joachims in using a support
vector machine (SVM) solution. The SVM objective is to find the set of weights
that results in the maximum separation between Infl(xk, y) and Infl(xi, y) (with
slack variables and regularization). With this objective, Joachims shows how
the constraints can be reduced to the form w · (f(xk, y)− f(xi, y)) > 1, which is
essentially a classification SVM on pairwise difference vectors. We can thus solve
the optimization problem efficiently using standard SVM software (Sec. 7).



6 Features for Predicting Scientific Influence

The job of the features is to provide information to explain why a user, y, deems
one researcher, x, to be more influential than another. One of our key hypotheses
is that a variety of non-scientific factors can help explain scientific influence. For
motivating these factors, we draw on the ideas of Cialdini [10], a popular work
on the principles of human influence. Of course, these principles may operate
differently here, and the effectiveness of our features may be the result of other
not-yet-understood processes. However, our aim is to both improve our system,
and gain insights about what sorts of information are most useful.

The particular features were selected based on development experiments.

Basic Network These features encode the information that we originally used
to create the scientific social networks (Sec. 3). Features indicate the (a) no. of
papers where y cites x, (b) no. of times y and x are co-authors, (c) no. of times x
and y share a common co-author, and (d) cosine similarity of x and y’s papers.

ReverseCite Cialdini [10]’s first principle of influence is reciprocity : we are
influenced by people who do something for us. As a potential instance of this in
science, we include a feature for the number of times x cites y, i.e., the opposite of
what we typically measure. Note we are not assessing here whether pure citation
reciprocity is at play; we are assessing whether the fact someone cites you makes
you more likely to rate them as genuinely influencing you.

Authority We are also influenced by people in positions of authority. This is
best exemplified by Milgram’s famous study where participants performed acts
against their personal conscience when instructed to do so by an authority fig-
ure [11]. To encode the authority of x, we include features for x’s total number in
the data of (a) citations and (b) co-authors; these measures are known to corre-
late with authoritative positions such as program committee membership [12]).

Similarity It has also been established that people are most influenced by
similar people [10]. We measure similarity in three ways:

(1) Affiliation: Since our data includes affiliation information for each researcher,
we include features for whether x and y have the same affiliation and whether the
final token in their affiliations match (indicating they are in the same country,
state, or province). We also labeled each affiliation with whether it represents an
academic, government, or industrial organization type; we then include a feature
for whether x and y have the same organization type.

(2) Name: Two researchers may also share a similar ethnicity. We capture this
in our system by including a feature for the semantic similarity of x and y’s first
names. We compute this similarity using recent data from Bergsma et al. [13],
who built clusters of names based on communication patterns on Twitter. The
name clusters were shown to be useful for predicting a user’s ethnicity, race, and
native language. Our feature is the cosine similarity between x and y’s cluster-
membership-vector (the vector of similarities to each cluster centroid).



(3) Gender: People of one gender may be more influenced by people of the same
gender. For each x and y, we compute the most likely gender of their names via
the gender data of Bergsma and Lin [14], and include a feature for which of the
four x/y gender configurations (M/M, M/F, F/M, F/F ) is under consideration.

SocialProof A final, widely-exploited form of influence is commonly called
social proof : we often adopt the behaviour of our peers as a default habit [10].
In our case, if y’s academic peers are influenced by researcher x, then y might be
too. An example of this kind of default thinking in research is the hundreds of
citations to a paper by Salton, where the paper does not actually exist [15]; many
researchers were simply copying the citations of their peers without looking up
the original paper. To capture this kind of influence, we add a feature to our
classifier for the number of times that y’s co-authors cite x.

TimeInactive In development experiments, we discovered one other feature
that was a good negative predictor of influence: time since the researcher’s last
publication, in years. After researchers become inactive, their influence decreases.

All When we use all the above features together, we refer to it as the All system.
When using All , we also incorporate a new technique for improving the feature
types that rely on citations. Rather than just counting the number of papers
where y cites x, we count how often the surname of x is mentioned in the papers
of y. While more noisy than citations, there are two primary reasons for using
surname counts: (1) Zhu et al. [16] recently showed that citations mentioned
more than once in a paper are more likely to be rated by the authors as being
“influential”, and surname counts indirectly capture citation counts, and (2)
since the AAN data is a closed set (Sec. 2), we can indirectly capture citations
to papers by the researchers that occur in non-AAN venues (e.g., papers by
researchers who regularly publish in both machine learning and NLP).

7 Experiments

Our experiments address two main questions: (1) How much can our approach
improve over the standard way of measuring influence via citations? and (2) How
important are each of the scientific and non-scientific factors in the prediction
of influence? For the latter question, we test the value of each feature type by
seeing how much accuracy drops when features are removed from the system.

For evaluation, we divide the gold ratings by user : we take the ratings from
54 users for training and from 20 other users for final test data. We train our
models using SVM-Rank [17]. Since we do not have a surfeit of data, we per-
formed development experiments and tuned the SVM regularization parameter
by performing 54 rounds of leave-one-out evaluation on the training data. For
the final results, we train on all 54 users and test on the held-out test data.

Our unit of evaluation is a screen completed by a user, y: one selected re-
searcher x and 10 alternatives. Our evaluation metrics are: (1) Top-1 Acc.: the
proportion of screens for which we perfectly predict the user-selected researcher



Type System Top-1 Acc. (%) MRR (%) Signif.

Baseline Random 9.1 27.5 p<0.001
Most-cited 29.6 51.4 p<0.001

RankSVM Features: ResearcherID 27.6 47.2 p<0.001

RankSVM Features: Basic Network 37.4 56.0 p<0.001
Features: All 46.1 63.4 -
Features: All - ReverseCite 45.2 62.9 Not signif.
Features: All - Authority 45.0 62.9 p<0.2
Features: All - Similarity 44.4 62.2 p<0.1
Features: All - SocialProof 45.2 62.8 Not signif.
Features: All - TimeInactive 44.2 62.4 p<0.05

Table 1. Main results: Baselines, All system, and with features removed. Signif. gives
p-value (McNemar’s) for whether system’s Top-1 Acc. is significantly worse than All .

Fernando Pereira, Dekang Lin, Chris Manning, Aravind Joshi, Ken Church, Mark Steed-
man, Hal Daume, Graeme Hirst, Jason Eisner, Chris Quirk, Ray Mooney, Philip Resnik

Table 2. Most-highly-ranked researchers: Ranked in descending order of the learned
weights of the ResearcherID model (trained on ratings of 54 survey respondents).

from the 11 choices, and (2) Mean reciprocal rank: (MRR) of the correct re-
searcher, a standard IR metric for evaluating rankings (closer to 1 is better).

We compare to three baseline systems:

1. Random: Select a researcher, x, randomly from the 11 choices
2. Most-cited: Select the researcher, x, that y cites the most
3. ResearcherID : A learned classifier with one feature: the ID of researcher x

ResearcherID ignores y and thus the relationship between x and y, and thus lets
us test whether a global ranking of researchers can generate accurate predictions.

8 Results

Table 1 presents the main results of our study. All is substantially and signifi-
cantly better than the baselines. In fact, the Basic Network system is also sig-
nificantly better than Most-cited (p<0.01, McNemar’s test), showing the power
of combining even simple features via machine learning. The feature ablation
shows that Similarity and TimeInactive are the most important new features,
but Top-1 Acc. drops by a percentage or two when any of the feature classes
are removed. The overall strong performance of All is thus due to the collec-
tive contributions of all feature types, even though these contributions may not
individually be statistically significant. So, even when we consider how many
papers x and y have co-authored, and how often y has cited x, etc., there is still
valuable information in more subtle clues, such as whether x and y are in the
same country, whether x has cited y, whether y’s colleagues have cited x, etc.
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Degree-1: Number of co-authored papers 0.82
Similarity of first names 0.75
Affiliation perfect match 0.56
Topic-Sim: Cosine similarity of publication term vectors 0.49
Cites: Number of times you mention the researcher’s last name 0.42
Degree-2: Number of shared co-authors 0.26
ReverseCite: Number of times the researcher mentions your last name 0.19
Affiliation match of country/state 0.18
Affiliation match of type: academic, government, or industrial 0.18
Authority : Number of overall citations researcher has 0.18
SocialProof : Number of times your co-authors cite the researcher 0.12
Cites: Number of times you cite the researcher 0.11
TimeInactive: Number of years since researcher’s last published paper -0.27

Table 3. Features and their learned weights in the All system.

The ResearcherID system performs worse than Most-cited, illustrating the
importance of modeling the relationship between an influencer and a user, rather
than just relying on a global ranking of influencers (further experiments also
showed adding these features impairs the All system). It is nevertheless interest-
ing to consider the resulting ranking of researchers using ResearcherID (Table 2).
These researchers are certainly some of the leaders of the ACL community.

Fig. 4 shows how system performance depends on the amount of training
data. Even with very little training data (50 or so completed screens), the All
system exceeds both the Most-cited baseline and the Basic Network system per-
formance. At the same time, All continues to improve up to the full 3K training
instances, and so collecting further data may well increase accuracy further.

Table 3 provides the feature weights of All and thus a picture of how All
computes its scores. We regard these numbers cautiously as the feature values



themselves have different dynamic ranges; also when there are two similar fea-
tures, the SVM divides credit between them (e.g. the two Cites features).

Since not all the above information is always available, we also ran exper-
iments with reduced feature sets. First, because some bibliographic databases
may not provide full paper texts, we ran our system using only paper meta-
data (e.g. citations, co-authorships). This results in a Top-1 Acc. of 42.8% (sig-
nificantly worse than All , p<0.01). Next, there are some collections, such as
arxiv.org, which provide full-text, author, and affiliation data, but not citations.
When excluding all citation-derived data (but notably not our last-name-count
features), we obtain 42.6% (also worse than All , p<0.01). While worse than All ,
these systems are still much better than the typical Most-cited approach, and in
the latter case, can be achieved without the use of citations at all!

9 Discussion and Related Work

Why are citations alone not the best predictor of influence? First of all, stud-
ies have documented that there are many reasons to cite a paper aside from
acknowledging its influence [4]. You may simply be paying homage to an early
pioneer, or perhaps criticizing another person’s work. Secondly, our work here
hints at influence beyond the medium of publication. For example, two people at
the same institution are more likely to have a general influence on one another,
even when such sharing is not manifested in citations or even co-authorship.

Recognizing that not all citations imply influence, Zhu et al. [16] used ma-
chine learning to predict the most important citations in a paper. Like us, they
used peer assessment to gather training data. Unlike our approach, their method
does not capture the valuable and effective social factors that we consider above.

A few recent papers have made use of the AAN in order to investigate the
spread of scientific ideas [18, 19]. Radev et al. [20] considered citation networks
and collaboration networks separately, but did not integrate these into a joint
model of influence, as we do. Johri et al. [21] used topic models to identify
different types of collaboration in ACL articles (e.g. apprenticeship, synergistic,
etc.); we could potentially exploit this data as an additional information source
in order to refine the co-authorship features in our system.

There are ties between research in bibliometrics and research in broader social
networks. For example, studies of influence have been performed within online
social networks [1]. Academic social networks have also been used as case-study
social-networks in many publications, including the foundational paper of the
important link prediction problem in social networks [22].

Our models of influence have immediate application in the real world. For
example, Fig. 5 shows the predicted influence on various researchers of the first
author of this paper versus whether they responded to his request to complete
the survey. When the predicted influence was high, people were more likely to
respond to the request. Since it takes effort to contact people and configure
their surveys, we could save time by using the predicted influence as a guide for
whom to contact. As another example, note that our results suggest that the



 0

 1

 2

 3

 4

 5

 6

 7

No Yes

In
fl.

 o
f R

eq
ue

st
er

 o
n 

R
es

ea
rc

he
r

Researcher Responded?
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ticipation in the survey, and whether the researchers complied with the request.

more people you cite, the more influence you will have. Unlike other conferences,
AI’2014 does not allow authors an extra page for citations. This might be limiting
the potential influence of work published at this venue!

10 Conclusion and Future Work

We have proposed a novel approach to the prediction of scientific influence. We
extracted a dataset of researchers from the field of computational linguistics, and
used readily-available, publication-derived data to create scientific social net-
works for each researcher. To generate training data for our approach, we asked
a subset of these researchers to perform an online survey to identify the other
researchers who most influenced them. Our survey enjoyed a 66% response rate,
and users provided very high-quality ratings, rarely contradicting themselves and
clicking across the whole range of options as expected. Our system, trained on
these ratings, strongly outperformed the baselines and standard citation-based
approach. The overall large gains in accuracy were attributed to the combination
of small contributions from each of a variety of novel and interesting features.

The next step for this line of research is to apply our approach to other
domains. Do we need peer assessments to train the system in each domain?
Could we calibrate our system with only a few ratings? Or are the correlations we
observed in our domain actually universal across science? We are also interested
in aggregating our scores, both to compare the overall influence of researchers, as
well as to answer questions such as, “how much influence does researcher x have
in a particular geographic region or sub-community?” We are also interested in
studying the dynamics of influence as people move into and out of the field.
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