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ABSTRACT 

Co-located work environments allow people to maintain 

awareness by observing others’ actions (called consequen-

tial communication), but the computerization of many tasks 

has dramatically reduced the observability of work actions. 

The recent interest in gestural interaction techniques offers 

the possibility of recreating some of the noticeability of 

previous work actions, but little is known about the observ-

ability and identifiability of command gestures. To investi-

gate these basic issues, we carried out a study that asked 

people to observe and identify different sizes and morphol-

ogies of gestures from different locations, while carrying 

out an attention-demanding primary task. We studied small 

(tablet sized), medium (monitor-sized), and large (full-arm) 

gestures. Our study showed that although size did have sig-

nificant effects, as expected, even small gestures were high-

ly noticeable (rates above 75%) and identifiable (rates 

above 69%). Our results provide empirical guidance about 

the ways that gesture size, morphology, and location affect 

observation, and show that gestural interaction has potential 

for improving group awareness in co-located environments.  
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INTRODUCTION 

In 1993, Don Norman describes the usefulness of “big con-

trols and big actions” for shared work: 

The critical thing about doing shared tasks is to keep eve-

ryone informed about the complete state of things […] 

each pilot or member of the control team must be fully 

aware of the situation, of what has happened, what is 

planned. And here is where those big controls come in 

handy. When the captain reaches across the cockpit over 

to the first officer’s side and lowers the landing-gear lev-

er, the motion is obvious: the first officer can see it even 

without paying conscious attention. The motion not only 

controls the landing gear, but just as important, it acts as 

a natural communication between the two pilots, letting 

both know that the action has been done. […] Automati-

cally, naturally, without any need for talking. [25, p. 142] 

This kind of information flow, also called consequential 

communication, has been shown by several researchers to 

be an important part of the natural way in which people 

maintain awareness in a group [12, 30, 33]. However, con-

sequential communication depends on large easily-

observable actions and controls, which are no longer com-

mon in most workplaces. Instead, most tasks are now car-

ried out on general-purpose computers with standard graph-

ical user interfaces. On these computers, activities that once 

had characteristic actions and artifacts (e.g., getting a file 

from a cabinet, using a Rolodex to find a telephone number, 

drawing a diagram, or entering numbers in a ledger) now all 

look very similar to an observer—that is, they all look like a 

person sitting at a computer monitor and moving a mouse. 

Researchers in distributed groupware have looked at the 

problem of reduced observability (since people’s bodies are 

not visible in a distributed setting), and have proposed visu-

alization techniques to make others’ actions in a shared 

workspace more obvious [13]. However, these enhance-

ments often work only when people are observing the same 

part of the shared workspace, and the techniques do not 

provide a solution in situations where people are carrying 

out loosely coupled work in a co-located setting. 

A recent development, and one that could potentially im-

prove observability, is the rise of gestural interaction tech-

niques. Gestures are now common on touch-screen devices 

of all sizes, and larger gestures that involve full-body inter-

action have also been extensively studied (e.g., Kinect-

based interaction, Virtual Shelves [19], Air Pointing [6], 

and Skinput [16]). Gestures and full-body interactions bring 

large easily-observable actions to general-purpose comput-

ers, and could thus be a solution to the problem of observa-

bility for collocated environments—they could be one way 

that designers help people maintain group awareness. 

There is little information available, however, about wheth-

er gestural commands are in fact observable and interpreta-

ble, and what size of gesture is needed for an observer to 

notice the gesture while carrying out other tasks. That is, 

how should gestures be designed to make possible the kind 

of group awareness that Norman described? 
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We carried out an experiment to answer this question. We 

measured how well participants were able to observe and 

identify gestures of various sizes and morphologies from 

different locations in a co-located environment, while carry-

ing out an attention-demanding primary task. We tested 

three gesture sizes: small gestures that took place on a tab-

let-sized device; medium gestures that occurred on a moni-

tor-sized display; and large gestures that involved full-arm 

pointing to different locations in the room.  

The study provided three main results: 

 Gesture size did significantly affect both observation 

and identification. However, small gestures had surpris-

ingly high rates of both observation (74%) and identifi-

cation (69%). Medium and large gestures showed no 

differences for observation (82% vs. 83%), but large 

gestures were more accurately identified (92% for large 

vs. 83% for medium); 

 Observation and identification were strongly affected by 

both location (both rates ranged from 65% to 91% by 

location) and gesture morphology (observation ranged 

from 59% to 99%, and surprisingly, the least-observed 

gesture was one of the large full-arm pointing gestures); 

 Participants subjectively rated larger gestures as requir-

ing significantly less effort than smaller gestures, and as 

being more observable and identifiable; people also 

strongly preferred the large gestures for the task of 

maintaining group awareness.  

Our results suggest that gestural interaction techniques can 

provide the foundation for the consequential communica-

tion that underlies Norman’s idea of ‘big actions’—and that 

although gesture size does matter, even small gestures on 

small devices are surprisingly visible. We considered how 

smaller gestures could be so well observed; our analysis 

showed that even when command gestures are small, the 

preparatory and staging actions that precede them are often 

much more observable—for example, moving one’s hand 

up to a mobile device is noticeable action that draws atten-

tion to the upcoming command gesture.  

Our study provides empirical evidence about the benefits of 

gestural interfaces for collaborative activity, and is the first 

to analyze the specific effects of gesture size, morphology, 

and location on observability and identification. Our work 

indicates that designers could use gestural interaction tech-

niques as a way to improve the natural communication and 

awareness that occur in co-located work environments. 

RELATED WORK 

Groups and Mixed-focus Collaboration 

Groups are sets of two to five people who carry out tasks in 

medium-sized workspaces [14]. Whenever people engage 

in collaborative activities, they have to split their attention 

between their working task and awareness maintenance. 

Since these two tasks compete for people’s attention, 

groupware designers try to minimize the cognitive load 

from awareness maintenance (see next section for exam-

ples) and find a balance between these two tasks [13]. 

When people work in a group, they often engage in mixed-

focus collaboration, i.e. people shift frequently between 

loosely and tightly coupled activities during a work session 

[7]. Coupling refers to the degree with which people have 

to interact to progress with their work [29]. When people 

are loosely coupled, they have to interact less with each 

other to complete their task as when they are tightly cou-

pled [29]. However, even during loosely coupled work, 

people still need to be aware of others’ activities [26]. 

Group Awareness and Consequential Communication 

Awareness is the perception and comprehension of the state 

of the environment [8, 14]. Group awareness, that is an un-

derstanding of the activities of others, provides context for 

people’s activities and is critical to successful collaboration 

[7]. Two factors determine the level of group awareness: 

the actor’s nimbus (the space in which actors make their 

activity available to others), and the observer’s focus (the 

space which is covered by the observer’s attention) [3]. 

When nimbus and focus overlap, observers go through a 

three-phase process to gain group awareness: perception of 

an action, comprehension of the situation, and projection of 

the future status [9]. There are several methods for creating 

group awareness in collocated environments [12]: direct 

communication, indirect productions, consequential com-

munication, feedthrough, and environmental feedback. 

Consequential communication occurs through visible or 

audible signs of interaction with a workspace [30]. The size 

of the actions necessary to operate controls makes actions 

public and creates situation awareness, which is important 

in many collaborative real-world tasks [30]. In HCI re-

search, consequential communication is frequently men-

tioned as an awareness mechanism, and observational stud-

ies show that it is frequently used in real-world situations 

[18, 30]. However, it is rarely explored in controlled studies 

and occasionally considered to be of little importance [31]. 

This is in contrast to other fields, which showed that conse-

quential communication plays a crucial role throughout life, 

for example, as facilitator for learning through observation 

and imitation [15, 28]. 

Gestures 

In HCI, the term gesture is used for a wide variety of con-

cept (see [5] for an overview). A classification that fits best 

within the scope of this work might be a combination of 2-

D plane-based finger movements [1] and 3-D mid-air arm 

movements [6]. 

Initially, swipe gestures were used to move elements 

around a touch screen [20]. Researchers extended these 

simple gestures to include geometric forms, script, and mul-

ti-touch input [10, 17]. Next, researchers created technolo-

gies that enables the use of gestures on different surfaces, 

such as the human arm [16] and virtual space in front of the 

user [11, 21]. Two-D plane-based gestures have been inves-

tigated in great detail. Researches have evaluated, for ex-

ample, learnability [23], ergonomics [24], and social as-



pects [27] of gestures (see [35] for a recent overview). Very 

few papers, however, have implicitly investigated gestures 

as a method for creating group awareness in co-located en-

vironments. Morris et al., for example, used collaborative 

gestures to create awareness in a co-located work environ-

ment [22]. 

Full 3-D input using arm gestures was first mentioned by 

Bolt [4] and explored by Baudel and Beaudouin-Lafon [2]. 

Unfortunately, most papers in this area focus on technical 

aspects, and only two articles explore human factors of full-

arm gestures in HCI: Virtual Shelves [19] and Air Pointing 

[6]. Neither of these works have investigated the conse-

quential communication aspect of full-arm gestures. 

A STUDY OF GESTURE OBSERVABILITY 

To determine how factors such as gesture size, morphology, 

and location affect people’s ability to see and interpret these 

gestures, we carried out a controlled experiment. We picked 

these factors because they are of high importance for the 

observability of gestures [32]. We chose a dual-task study 

setup because it embodies the trade-off between primary 

working task and awareness-maintenance task. In our simu-

lated collaborative scenario, the study participants (the ob-

server) carried out an attention-demanding choice reaction 

task (word selection) as primary task in a room where an-

other person (the actor, a confederate) executed various 

gestures. The observer’s job was to maintain awareness of 

the actor, but without reducing their performance on their 

primary task. With our setup, the primary task required the 

majority of participants’ attention. The task required foveal 

vision focus on the touch screen, thus forcing participants to 

temporarily dedicate their full attention. Furthermore, par-

ticipants completed the primary task      as often as the 

actor performed gestures. 

Study Methods 

Participants and Apparatus 

We recruited    participants from a local university, ages 

      ( ̅    ),   female,   male. These participants 

were all experienced with traditional computer systems 

(mean    hours / week), and were all familiar with gestures 

on touch-based devices such as mobile phones and tablets. 

The study was carried out in a large laboratory (approxi-

mately          ), in which we placed two moveable 

carts holding the study computers. The actor’s cart held a 

    monitor and remained stationary during the study. The 

observer’s cart was moved to several different locations 

during the session (see Figure 2). It held a    MiMo touch 

screen, on which the primary task was displayed, and on 

which the observer indicated their observations and identi-

fications of the actor’s gestures. 

Study Conditions: Gesture Size, Morphology, and Location 

We defined three gesture sizes: small touch-gestures per-

formed on a    hand-held tablet; medium hover-gestures 

performed approximately      above a     horizontal 

screen; and large full-arm pointing gestures.  

 

 

 

Figure 1: Overview of small gestures (top), medium gestures 

(center), and large gestures (bottom) 

For each of the gesture sizes, we created 6 different ges-

tures (see Figure 1 and Table 1). We chose a small gesture 

vocabulary in order to keep the recognition task simple, and 

to focus on our main interests of gesture observability and 

identifiability. For small and medium gestures, we chose 

two gesture types that can be found on most touch screens 

(tap and swipe) and one geometric gesture (circle). We 

based our large gestures on systems such as Virtual Shelves 

[19] or Air Pointing [6], which partition the space around 

the user into zones. For our system, we used six zones that 

were arranged in front of the actor (from      to      
horizontally, and from      –      vertically).  

To gain quantifiable values for each of the gesture sizes, we 

measured magnitude and execution time of the actor’s arm 

movement with an IR-based motion-tracking system. The 

actor performed each gesture 10 times while we captured 

his shoulder, elbow, wrist, and index finger movement.  



Naturally, the index finger travelled the longest distance: 

 ̅         (small gestures),  ̅         (medium ges-

tures), and  ̅         (large gestures). Small gestures 

were performed in  ̅       , medium gestures in  ̅  
     , and large gestures in  ̅       . 

Table 1: Gestures with mean magnitude and execution time 

Small Medium Large 

Tap: top left corner 

(            ) 
Tap: top right corner 

(            ) 
Point: left, high 

(             ) 
Tap: top right corner 

(            ) 
Tap: bottom right corner 

(            ) 
Point: front, high 

(            ) 
Circle: top half 

(            ) 
Circle: left half 

(            ) 
Point: right, high 

(            ) 
Circle: bottom half 

(            ) 
Circle: right half 

(1.06        ) 
Point: left, low 

(            ) 
Swipe: left edge 

(            ) 
Swipe: top edge 

(            ) 
Point: front, low 

(            ) 
Swipe: right edge 

(            ) 
Swipe: left edge 

(            ) 
Point: right, low 

(            ) 
 

Participants observed the actor from seven different loca-

tions (L1–L7), comprising three positions arranged in a 

semicircle around the actor, and either two or three orienta-

tions at each position (facing the actor, or facing perpendic-

ularly away). Figure 2 shows these locations. Six locations 

formed a symmetry: L1–L7, L2–L6, and L3–L5. The first 

two pairs, however, differ in a way that in L1 and L2 partic-

ipants are behind the actor; in L6 and L7 they are in front. 

 

Figure 2: Observer locations (O) and actor location (A) 

Observer’s Primary Task 

In order to simulate a realistic work environment, we creat-

ed an attention-demanding primary task for the observer to 

perform during the experiment. The task involved repeated-

ly selecting one of four possible buttons indicated by a writ-

ten message displayed on the observer’s display (displayed 

on a    MiMo touch screen, see Figure 3). Participants were 

given a short period to complete the selection (      
     , randomly chosen); if they did not finish their selec-

tion in time or made a wrong selection, the system would 

play a warning sound. After each correct selection, the sys-

tem would wait       and then display another message. 

Procedure 

After completing a demographics survey and being intro-

duced to the system, participants completed 12 training 

trials. Participants were then moved to the starting location 

and asked to start the primary task; they were instructed to 

maintain awareness of the actor’s activities, and report any 

gestures they observed using their interface (see Figure 3). 

 

Figure 3: User interface for the primary working task 

The actor then started performing typical tasks at his sta-

tion, which acted as distractor tasks in between gestures that 

the observer had to report. The actor texted on the hand-

held tablet (small gestures); he typed using the on-screen 

keyboard on the horizontal screen (medium gestures); and 

he fidgeted and moved objects around at the cart (large ges-

tures). Within these typical activities, the actor performed a 

total of    gestures (each gesture twice, randomized order) 

per location. The actor’s UI indicated when to perform the 

next gestures; the interval was randomly chosen (from       
to      ). When participants noticed a gesture, they could 

pause the primary working task, and specify the gesture 

they just observed from the UI.  

Study Design and Hypotheses 

The study used a     within-participants factorial design 

with factors Gesture size (small, medium, large) and Loca-

tion (L1–L7, as shown in Figure 2). Order of gesture size 

was balanced using Latin square between participants; or-

der of locations was randomized within gesture size. 

The actor performed a total of (       )        

gestures per participant. The observer’s system recorded all 

gesture observations and identifications, and tracked the 

participant’s performance on the primary task. After the 

experiment, participants filled out a basic demographic 

questionnaire, one NASA TLX form per gesture size, and 

one ranking questionnaire.  

We formulated four hypotheses for our study: 

H1. Larger gestures will be observed at a higher rate than 

smaller gestures. 

H2. Larger gestures will be identified more accurately than 

smaller gestures. 

H3. Larger gesture size will reduce the negative effects of 

occlusion 

H4. Facing the actor will have higher observation and 

identification rates. 



Data Analysis 

We performed a univariate ANOVA to investigate the ef-

fect of Gesture Size and Location on primary task perfor-

mance measured as reaction rate. To determine the effect of 

factors Gesture size and Location on observation and identi-

fication rates, we analyzed the trials in a     repeated-

measures ANOVA. We carried out separate analyses of our 

dependent measures by gesture morphology (since mor-

phologies were not the same across sizes) with a     RM-

ANOVA. We evaluated the TLX data using a repeated-

measures ANOVA, and we analyzed the rank data using a 

Friedman test for   related samples. All post-hoc tests used 

Bonferroni corrections. 

RESULTS 

Primary Task Performance 

We did not find effects of Gesture size ( (     )      
    ) and Location ( (     )          ) on primary 

task performance. We found, however, a significant effect 

of Participant x Gesture size for 8 participants 

( (      )           ). When looking more closely 

at this finding, we saw that all affected participants per-

formed significantly worse with the first gesture size they 

saw during the experiment. We concluded that the training 

phase was too short for them to achieve their highest level 

of proficiency. Since we counter-balanced the order of ges-

ture sizes between participants and therefore controlled for 

this factor, we felt confident that primary task performance 

was independent from Gesture size and Location. As a re-

sult, we omitted it from all further analyses. 

Observation Rate and Identification Rate 

Observation rate is the number of gesture observations 

made by a participant divided by the number of gestures 

performed by the actor. Identification rate is the number of 

gestures correctly identified by a participant divided by the 

number of observations. 

Sphericity was violated for observation rate by both Gesture 

size and Location (Mauchly’s test:      ), and for identi-

fication rate by Location (Mauchly’s test:      ). For 

these analyses, we use Greenhouse-Geisser corrections. 

Effects of Gesture Size 

On average, participants showed the highest observation 

(see Table 2 and Figure 4) and identification rates (see Ta-

ble 3 and Figure 5) with large gestures, followed by medi-

um and small gestures. 

Observation Rate 

ANOVA showed a significant effect of Gesture size on 

Observation rate ( (        )           ). Follow-up 

analyses showed that medium and large gestures had a 

higher observation rate than small gestures (     ). 

Identification Rate 

ANOVA also showed a significant effect of Gesture size on 

Identification rate ( (    )            ). Follow-up 

analyses showed that all three gesture sizes were signifi-

cantly different (p < .01). 

 

Figure 4: Observation rates per gesture size (small: blue / left; 

medium: green / center; large: red / right) 
 

 

Figure 5: Identification rates per gesture size (small: blue / 

left; medium: green / center; large: red / right) 

Table 2: Observation and identification rates [%] 

Gesture size Small Medium Large 

Observation rate: 

Mean ± Std. err. 
74 ± 5.0 82 ± 4.3 83 ± 3.0 

Identification rate: 

Mean ± Std. err. 
69 ± 3.8 82 ± 3.5 92 ± 2.0 

Table 3: Observation and identification rates [%] 

Location L1 L2 L3 L4 L5 L6 L7 

Observation rate: 

Mean ± Std. err. 

65 

± 

5.4 

76 

± 

4.2 

80 

± 

4.5 

89 

± 

2.1 

78 

± 

5.7 

91 

± 

2.5 

79 

± 

5.5 

Identification rate: 

Mean ± Std. err. 

68 

± 

4.5 

77 

± 

3.4 

91 

± 

5.0 

91 

± 

1.8 

85 

± 

3.7 

89 

± 

2.5 

76 

± 

3.3 

Effects of Location 

Observation Rate 

ANOVA showed a significant effect of Location on Obser-

vation rate ( (        )            ). As shown in 

Table 1, the different locations were associated with a wide 
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variety of observation rates: the highest at L6 and L4, and 

the lowest at L1 (see Figure 6 for a map of observation rates 

by location). Follow-up analyses showed that the observa-

tion rate at L1 was significantly worse than from all other 

locations (     ), and L6 had a higher observation rate 

than its symmetric counterpart L2 (     ). 

Identification Rate 

ANOVA also showed a significant effect of Location on 

Identification rate ( (        )            ). As 

shown in Table 3 and Figure 7, participants had the highest 

identification rate from L4, followed by L6, and the worst 

observation rate from L1. The identification rate from L1 

was significantly worse than from L3 through L6 (all 

     ), and L4 and L6 had significantly higher identifica-

tion rates than L1, L2, and L7 (all      ) 

Gesture Size x Location Interaction 

Observation Rate 

ANOVA showed a significant interaction between Gesture 

size and Location ( (        )           ) for Obser-

vation rate. As shown in Figure 4, small gestures were sig-

nificantly better observed from L4 and L6 (both  ̅      ) 

than from L1 ( ̅      ) and L2 ( ̅      ) (all      ). 

Observation rate from L1 was significantly worse than from 

all other locations except L2 (all      ). As expected, 

mean differences were high between symmetric locations 

L1–L7 (   ) and L2–L6 (   ) and low between L3–L5 

(   ) and L4–L6 (   ). 

Medium gestures were best observed from L6 ( ̅      ) 

and L4 ( ̅      ) and worst observed from L1 ( ̅      ). 

Observation rates from L1 were significantly worse than 

from L3 through L6 (all      ) and from L2 worse than 

from L6 and L4 (both      ). Compared to small ges-

tures, observation rate in L2 improved close to average 

( ̅      ). As expected, mean differences became lower 

between symmetric locations L1–L7 (   ) and L2–L6 (   ) 

and stayed low between L3–L5 (   ) and L4–L6 (   ). 

 

Figure 6: Observation rates per location (small: blue / left; 

medium: green / center; large: red / right) 

Large gestures were best observed from L6 ( ̅      ) and 

L2 and L4 (both  ̅      ) and worst observed from L1 

( ̅      ). The only significant difference appeared be-

tween L6 and L1 (     ). Overall, differences between 

symmetric locations are for amongst large gestures: L1–L7 

(   ) and L2–L6 (   ), L3–L5 (   ) and L4–L6 (   ). 

At L1 and L2, participants showed significantly lower ob-

servation rates with small gestures than with medium and 

large gestures (all      ). 

Identification Rate 

ANOVA also showed a significant Gesture size   Location 

interaction ( (        )            ) for identification 

rate. As shown in Figure 5, small gestures were significant-

ly better identified from L4 ( ̅      ) and L6 ( ̅      ) 

than from L1 ( ̅      ), L2 ( ̅      ), and L7 ( ̅  
    ) (all      ). Identification rates from L1 and L2 

were significantly worse than from all other locations (all 

     ). As expected, mean differences were high between 

symmetric locations L1–L7 (   ) and L2–L6 (   ) and low 

between L3–L5 (   ) and L4–L6 (   ). 

 

Figure 7: Identification rates per location (small: blue / left; 

medium: green / center; large: red / right) 

Medium gestures were best identified from L4 ( ̅      ) 

and L6 ( ̅      ) and worst identified from L7 ( ̅  
    ). Identification rate from L7 was significantly worse 

than from L2, L4, and L6 (     ). As expected, mean 

differences became low between symmetric locations L1–

L7 (   ) and L2–L6 (   ) and stayed low between L3–L5 

(   ) and L4–L6 (   ). 

Large gestures were best identified from L4 ( ̅      ), L6 

( ̅      ) and L2 ( ̅      ) and worst identified from L1 

( ̅      ). There were no significant differences between 

locations. Overall, mean differences between symmetric 

locations are very similar with large gestures: L1–L7 (   ) 

and L2–L6 (   ), L3–L5 (   ) and L4–L6 (   ). 

At L1 and L2, participants showed significantly lower iden-

tification rates with small gestures than with medium and 

large gestures (all four      ); at L3 and L7, participants 

showed significantly higher identification rates with large 

gestures than with small and medium gestures (all      ). 

Effects of Gesture Morphology 

We analyzed Gesture morphology separately within each 

gesture size (since they were different across sizes). Since 



sphericity was violated for all measures (Mauchly’s test: all 

     ), we use Greenhouse-Geisser corrections. 

For small gestures, ANOVA showed a significant effect of 

Gesture morphology on Observation rate ( (        )  
         ) and on Identification rate ( (        )  
         ); for medium gestures, ANOVA showed a 

significant effect of Gesture morphology on Observation 

rate ( (        )           ) and on Identification 

rate ( (        )           ); for large gestures, 

ANOVA showed a significant effect of Gesture morpholo-

gy on Observation rate ( (        )            ), but 

not Identification rate. 

Observation Rate 

 

Figure 8: Observation rates per gestures (small: blue / left; 

medium: green / center; large: red / right) 

Identification Rate 

 

Figure 9: Identification rates per gestures (small: blue / left; 

medium: green / center; large: red / right) 

We found that participants observed the small gesture cir-

cle: top significantly more often than the gestures tap: top 

left, tap: top right, and circle: bottom (all      ). For 

medium gestures, participants observed tap: bottom right 

significantly less often than the gestures circle: left, circle: 

right, tap: top right, and swipe: top (all      ). Among 

large gestures, point: left, low had a significantly lower ob-

servation rate than any other large gestures (all      ), 

and was the least-observed gesture at any size. 

Participants showed a significantly higher identification rate 

for the small gesture swipe: right than for the gestures 

swipe: left and tap: top right (all      ). For medium 

gestures, participants identified swipe: top significantly less 

often than all gestures except tap: bottom right (     ). 

For large gestures, there were no significant differences. 

Subjective Measures 

Participants rated their experience using the NASA TLX 

questionnaire. Overall, participants felt that larger gestures 

were less effort and less frustration than smaller gestures. 

 

Figure 10: Participant preference rating 

We found a significant difference in mental demand be-

tween all three gesture sizes (all      ). For physical de-

mand and frustration, there were significant differences 

between large gestures and small and medium gestures (all 

     ). Finally, participants rated small gestures as more 

effortful than medium and large ones (both      ). 

 

Figure 11: NASA TLX results 

We also asked participants to rank the different gesture siz-

es in terms of perceived visibility, recognition accuracy, 

and their preference to work with (Figure 11). (We discard-

ed the data from one participant because the questionnaire 

was not filled out correctly.) A significant majority of par-

ticipants ranked large gestures most visible (    ⁄ : 

  (    )      ,      ) and most recognizable (    ⁄ : 

  (    )      ,      ). Overall, 14 of 17 participants 

preferred to work with large gestures over small and medi-

um ones (  (    )      ,      ). 
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DISCUSSION 

In this discussion, we first explain how our results confirm 

our hypotheses and discuss some additional insights we 

gained from analyzing our results. Then, we come back to 

our premise and lay out how our findings support Norman’s 

idea of “big controls and big actions”. We describe some 

use cases, mention potential directions for future work, and 

address issues that come with the use of big gestures. Final-

ly, we list the limitations of our work. 

Hypotheses 

We confirmed all of our hypotheses. 

H1: Larger gestures lead to higher observation rates 

As predicted, participants showed significantly higher ob-

servation rates with large and medium gestures than with 

small gestures, and higher observation rates with large ges-

tures than with medium gestures. While this result is true on 

the (categorical) gesture-size scale (small—medium—

large), we also found a similar pattern when looking at the 

(continuous) gesture magnitude. Figure 12 illustrates the 

logarithmic relationship between gesture magnitude and 

observation rate ( (    )                    ). 

However, our regression analysis revealed that one large 

gesture (“point: left, low”) was a residual outlier. For the 

curve fit, we removed this outlier (case-wise analysis with 

   cutoff); we talk about this case later in the discussion. 

We want to emphasize that the logarithmic relationship 

continues across different gesture sizes and morphologies 

(2D touch and hover gestures as well as 3D pointing ges-

tures). This means we can generalize our findings to most 

gestures that fit our definition in the related work section. 

 

Figure 12: Observation rate per gesture magnitude 

H2: Larger gestures lead to higher identification rates 

Participants showed significantly better performance with 

large gestures than with medium and significantly better 

performance with medium than with small gestures. The 

overall identification rate of larger gestures is better than 

that of smaller gestures; even when observed, larger ges-

tures are easier to identify than smaller gestures.  

We found a logarithmic relationship between magnitude 

and identification rate, similar to the one between magni-

tude and observation rate ( (    )                
   ). Not surprisingly, the effect is smaller because there 

are other factors that affect identification rate. Again, our 

regression analysis revealed, that one gesture (medium size, 

“swipe top”) was a residual outlier. For the curve fit, we 

removed this outlier (case-wise analysis with    cutoff); we 

will come back to this particular case later in the discussion. 

 

Figure 13: Identification rate per gesture magnitude 

H3: Larger gestures are less affected by occlusion 

In locations L1 and L2, gestures were occluded by the ac-

tor’s body. A comparison of symmetrical pairs L1–L7 and 

L2–L6 therefore shows how much occlusion affected par-

ticipants’ observation rate. Our results showed that the 

mean differences in observation rate between L1 and L7 

and between L2 and L6 decreased with increasing gesture 

size. This implies that small gestures suffer significantly 

from occlusion and that this effect diminishes with in-

creased gesture size. With an unobstructed view to the ac-

tor, gesture size does not affect performance. However, in 

multi-display environments where people move around 

freely, it is likely that occlusion will occur; in this case, 

larger gestures can enable higher group awareness. 

Identification rates of all gestures were affected in similar 

ways by occlusion than observation rate. For medium ges-

tures, differences in identification rates between L1 and L7 

and between L2 and L6 were smaller than these differences 

in observation rate. We suspect that the location of the ges-

tures on the 22” screen were responsible for this effect: five 

out of six gestures were performed close to the right edge of 

the screen, so observers were able to catch a glimpse of 

these gestures around the right side of the actor’s body. 

H4: facing the actor leads to higher performance 

In locations L2, L4, and L6, participants were facing the 

actor, in locations L1, L3, L5, and L7, they were perpen-

dicularly seated to the actor. When pairwise comparing L1–

L2, L3–L4, L5–L4, and L6–L7, we found that participants 

performed on average better when facing the actor. Howev-

er, most of these comparisons showed no significant differ-
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ence. While these results might sound surprising, they are 

in accordance with theory. Vision research has shown that 

human response to rapidly moving targets is almost invari-

ant with its location in the field of vision [34]. 

Additional Findings and Research Questions 

Are all gestures of one size equally easy to observe? 

For small gestures, we found that “circle: top” was the easi-

est gesture to observe, significantly easier than both “taps” 

and “circle bottom” (all      ). This was most likely be-

cause it had the longest execution time (     ) and largest 

magnitude (      ) among all small gestures. 

For medium gestures, we found that “tap: bottom right” was 

significantly harder to observe than any other gesture ex-

cept “swipe: right” (all      ). Contributing factors were 

its low execution time (second lowest in its category:      ) 
and its small magnitude (smallest in its category:       ).  

For large gestures, we found that participants showed a 

significantly lower observation rate with “point: left, low” 

than with any other gesture (all      ). As before, we 

assume that mostly execution time (    ) and lack of mag-

nitude (      ) are responsible for this effect. In addition, 

the gesture was performed very close to the body, which 

made it more difficult to spot than other large gestures, 

which were all performed away from the actor’s body. 

Are all gestures of one size equally easy to identify? 

For small and large gestures, we found no gesture that was 

consistently better or worse than the other ones. 

For medium gestures, however, we found that participants 

performed significantly worse with “swipe: top” than with 

any other gesture except “tap: bottom right“(all      ). A 

detailed analysis showed that we can attribute more than 

half of the errors to confusing this gesture with the gesture 

“tap: top right”. These two seemingly different gestures 

share a similar post-stroke hold and retraction phase. Ap-

parently, participants oftentimes required the preparation 

and stroke phase of the actor’s gesture to shift their atten-

tion from their primary working task to the perception 

phase of consequential communication. To make gestures 

more distinguishable, we therefore recommend avoiding 

gestures that end with similar strokes and the same post-

stroke hold and retraction. For example, the small-gesture 

swipes were rarely confused with the small-gesture taps. 

Are large gestures generally easy to observe and identify? 

Ironically, the least likely observed gesture in our study was 

a large one. A good strategy to make large gestures visible 

is to make them lead away from the actor’s body. 

Did the labels “left” and “right” confuse participants? 

All directions in gesture descriptions were meant to be rela-

tive to the actor. As a result, there was a danger that partici-

pants confused left and right and top and bottom when they 

were in front of the actor (e.g., his “left” became their 

“right”). We analyzed all errors in conditions L6 and L7; no 

participant systematically confused any of these labels. 

“Big Controls and Big Actions” 

Norman’s original idea was that big controls and big ac-

tions create awareness. Our results showed that gestures, 

independently from their size, are indeed observable and 

can therefore improve group awareness: people know that 

something has happened. When looking at identification 

rate, we can also give an initial estimation for the next step 

toward group awareness, knowing what exactly has hap-

pened. Our results indicate that people can distinguish be-

tween at least six gestures. We also showed that identifica-

tion rate depends on more factors than observation rate. A 

more thorough investigation of these factors could give us 

more insight about potential limitations, such as upper lim-

its of an alphabet of discernible gesture, as well as guide-

lines for designing distinguishable gestures. Another im-

portant issue is finding gesture sets with different levels of 

observability, so that interaction designers can select a ges-

ture that matches an action’s desired publicity. 

There are many cases in which people would want to make 

their actions public. Public gestures can be part of, for ex-

ample, co-located multiplayer games where the group 

should be aware of certain actions. Another example are 

Scrum-teams where the team should know about the com-

pletion of a single Scrum-task. Likewise, there are many 

cases in which people want to keep actions private or do not 

want to distract others. As said before, our findings show 

that people can control the publicity or privacy of their ac-

tions through gesture size. 

There are, however, some disadvantages to large gestures. 

For example, they require more physical effort, and there 

are some socio-cultural restrictions to the use of big ges-

tures. Again, we assume that large gestures will mostly be 

used in group environments, where each member accepts 

and understand large gestures in the context of their work. 

Limitations 

There are a couple of limitations to our study. While we 

selected our gesture sizes to reflect a broad variety of ges-

tural interfaces, we only used a typical set of gestures with-

in each size and not a broad variety of all possible gestures. 

This allows us to only give an initial assessment and lower 

boundary about identification rates, leaving a more system-

atic approach to future work. Common contextual and se-

mantic knowledge, for example, can increase identification 

rates. In addition, our study took place in a controlled la-

boratory environment. We are confident but cannot guaran-

tee how much our findings apply to a real-world scenario. 

CONCLUSION 

In this paper, we demonstrated that gestural interaction 

techniques can be used for creating visible device interac-

tion, thus laying the groundwork for providing consequen-

tial communication to co-located collaborators. We meas-

ured observation and identification rates of different ges-

tures and showed that even small gestures are visible and 

could create consequential communication. However, larger 

gestures are more easily observable, mainly due to a re-



duced effect from occlusion. In addition, increasing size 

makes gestures more easily identifiable. Considering our 

findings, we encourage interaction designer to include ges-

tural interfaces in their groupware applications, so that us-

ers can benefit from having consequential communication 

as an implicit method for gaining group awareness. 
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