
Real-Time Groupware in the Browser:
Testing the Performance of Web-Based Networking
Carl Gutwin and Michael Lippold

Computer Science, University of Saskatchewan
110 Science Place, Saskatoon, SK, S7N 5C9

carl.gutwin, mike.lippold @usask.ca

T. C. Nicholas Graham

School of Computing, Queen’s University
Kingston, ON, K7L 3N6
graham@cs.queensu.ca

ABSTRACT

Standard web browsers are becoming a common platform
for delivering groupware applications, but until recently,
the only way to support real-time collaboration was with
browser plug-ins. New networking approaches have
recently been introduced – based on re-purposed techniques
for delivering web pages (Comet), or integration of real-
time communication directly into the browser (HTML5
WebSockets). Little is currently known, however, about
whether these new approaches can support real-time
groupware. We carried out a study to assess the
performance of the three different networking approaches,
based on a framework of groupware requirements, in
several network settings. We found that web-based
networking performs well – better than plug-in approaches
in some cases – and can support the communication
requirements of many types of real-time groupware. We
also developed two groupware applications using Comet
and WebSockets, and showed that they provided fast and
consistent performance on the real-world Internet. Our
studies show that web-based networking can support real-
time collaboration, and suggest that groupware developers
should consider the browser as a legitimate vehicle for real-
time multi-user systems.

Author Keywords

WWW, real-time groupware, performance, plug-ins.

ACM Classification Keywords

H.5.3 [Information Interfaces and Presentation]: CSCW.

General Terms

Design, Human Factors, Performance.

INTRODUCTION

The standard web browser is increasingly becoming a
platform for delivering rich interactive applications, and
many of these web-based applications are groupware: from
office systems (e.g., Google Docs, docs.google.com) to
instant messaging (e.g., Meebo, meebo.com), to multiplayer
games (e.g., Stick Arena, xgenstudios.com). There is,

however, a fundamental division in how these online
applications are deployed: some are based on plug-in
technologies such as Java (java.com), Flash
(adobe.com/flash) or Silverlight (silverlight.net), and others
are based on standards-based ‘plain browser’ technologies
such as DHTML, AJAX, or Comet.

Of these techniques, only plug-ins have traditionally been
used for synchronous groupware (i.e., systems in which
people can see each other move and interact in the shared
environment, in real time and at a high frame rate). The
‘plain browser’ approach is primarily used for semi-
synchronous and asynchronous groupware (although some
recent systems are moving towards real-time updates [8]).

One reason why synchronous groupware has only been
attempted with plug-ins is that real-time interaction has
much stricter network requirements (in terms of update rate,
message throughput, and latency) than semi-synchronous
applications, and web technologies have not traditionally
been able to provide this level of performance. Recent
advances in web-based networking, however, open the door
to supporting real-time interaction in the plain browser. For
example, capabilities in Ajax allow for streaming data to be
sent from the web server to the browser, and a ‘web socket’
capability is part of the specification for HTML5 [26]. A
groupware solution that does not require plug-ins is an
important advance, because although plug-ins can work
well, they present several disadvantages. First, the required
plug-ins may not be installed, and it may not be possible for
the user to install them (e.g., public-access machines or
managed systems), whereas a browser is part of the
standard software on most computers. Second, browsers on
some devices do not support plug-ins at all (e.g., on the
Apple iPhone and iPad); in these situations, the browser is
the only option for web-based groupware. Third, many
developers are advocating a move towards browser-only
applications, to reduce dependence on third-party or
proprietary plug-in providers [12]. For these reasons, more
and more groupware applications will eventually be
deployed on the standards-based browser.

Although web-based networking offers new opportunities,
there is still relatively little information available about
building synchronous groupware with techniques based on
JavaScript, HTML5, AJAX, and Comet. There are several
questions that need to be answered – and a primary one is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW 2011, March 19–23, 2011, Hangzhou, China.
Copyright 2011 ACM 978-1-4503-0556-3/11/03...$10.00.
part of this work for personal or classroom use is granted without fee

167

whether these mechanisms can meet the network
requirements of synchronous groupware, in terms of update
rate, message size, and latency.

In this paper we address this question by comparing the
network performance of three different web-based
networking approaches. The first approach re-purposes
existing networking mechanisms that were originally
designed for delivering web pages (i.e., Comet); the second
integrates traditional networking mechanisms into the
browser itself (i.e., WebSockets); and the third inserts a
separate execution environment into the browser (i.e., the
plug-in approach). To examine these three general
approaches, we carried out network tests with AJAX
polling, XHR multipart streaming, XHR iframe streaming,
WebSockets, and Java applets. We also built two example
groupware systems (a multi-user puzzle and a shared
whiteboard) as a further test of web-based networking.

Our results show that ‘plain browser’ web networking can
successfully support synchronous groupware. Comet
techniques were able to sustain update rates of at least 20
messages per second in both LAN and WAN tests, and
WebSockets were able to maintain much higher rates, even
with large message sizes. Round-trip latencies for Comet
techniques were between 67ms (LAN) and 185ms (WAN),
and for WebSockets were between 11ms and 86ms. These
performance rates are enough to support many common
types of groupware, including shared editors, awareness
systems, and multiplayer games. Our results suggest that
web-based networking will not be the main limitation in
delivering groupware in the browser – issues such as the
speed of the real-world Internet or the performance of the
browser’s graphics subsystem are much more likely to be
the limiting factor than the browser’s network performance.

The two main contributions of this work are to establish
that real-time interaction can be supported using standards-
based web networking, and to specify the performance
characteristics of three different approaches to supporting
real-time work in the browser. Our results provide initial
guidelines about what networking mechanisms to use when
designing real-time groupware for deployment on the
World-Wide-Web.

BACKGROUND

Our work builds on previous results from several
communities including CSCW, WWW, and distributed
systems. In CSCW, researchers have considered several
problems in real-world development and deployment of
groupware, and have presented toolkits (e.g., [2,5,17,25]),
techniques for improving robustness (e.g., [3,11]), and
some performance tests (e.g., [7,10]). In addition, several
groupware systems have been built on the Web, but these
are primarily asynchronous collaboration tools (e.g., [1]). A
few recent examples show real-time groupware systems
built with Comet techniques [14,22], but few performance
evaluations have been conducted.

Researchers in games and distributed systems have carried
out extensive work in testing many aspects of real-world
Internet performance (e.g., [15,16]), including the
performance of web servers and web services (e.g.,
[20,21]). However, we are unaware of performance tests for
the Comet or WebSockets technologies we discuss below.

Last, researchers and practitioners in the WWW community
have been very active in the development of web-based
networking techniques. This work appears in the standards
themselves (e.g., [26]), but aside from the numerous
practical reports on these approaches (e.g., [4]), there is
little guidance available for developers about how well
web-based networking will work for groupware.

Real-Time Groupware Network Requirements

As previous researchers have noted, real-time groupware is
different from other types of distributed systems in that it
sends several types of messages with varying quality-of-
service requirements [6,7]. As a way of contextualizing the
performance tests described below, we here consider five
canonical types of interaction that must be supported by
groupware, and specify network requirements for each type.

• Sequential turns and moves. In card games and board
games, or systems with floor control, people perform
single actions in turns. Messages to indicate the actions
are generally small, and the turns happen infrequently
(perhaps a maximum of one per second). The data
requirements do not change as more people join, since
only one person acts at a time.

• Text chat. Text-based communication is a common part of
many groupware systems. The data requirements of chat
are generally characterized by a tradeoff between message
rate and size: if chat is sent character by character, several
small messages per second are required (e.g., 5/sec); if the
system only sends larger blocks of text, then a smaller
number of larger messages are needed. In addition, there
can be a variable number of people in the chat session,
from two to dozens (e.g., in Internet Relay Chat). At the
server, text can either be delivered to clients as it arrives,
or can be aggregated and sent using a timer.

• Mouse movements. Many kinds of groupware systems use
mouse movement as an awareness cue – this is the basis
for telepointers and for intermediate-state updates of
actions such as lines in a shared drawing application.
Mouse-position messages are small, but since mouse
movement is difficult to predict, these systems require a
high message rate (e.g., 20-30 updates per second for
smooth telepointer movement). Various visual techniques
(such as motion blur) can improve the appearance of
streams where updates are less frequent, but the best-case
scenario is to receive position information in real time.

• Avatar movement. For several kinds of games, such as
first-person shooters and online role-playing games, a
large fraction of the messages in the system are position
updates for player avatars. Although each message is
relatively small, there can be many players in the
environment. To reduce network requirements, most

168

games use interpolation and extrapolation techniques that
allow positions to be calculated even at a lower update
rate. Updates from several players are aggregated at the
server, leading to larger messages that are sent less
frequently than for telepointers.

• Audio and video. Conferencing applications can make
substantial demands on network infrastructure, depending
on the quality of the audio or video signal. Although web
applications cannot currently access devices such as
microphones and webcams, future HTML standards may
allow this kind of interaction [27]. Data rates for common
audio and video standards range from as little as 20 Kbps
for a single voice stream to about 2000 Kbps for 720p
video using H.264, and even higher rates for higher-
quality video [24].

Using these building blocks, we can list several different
canonical types of groupware. Note that the requirements
described below are not based on a rigorous analysis of
existing systems, but rather are estimates of reasonable
values so that we can later assess the types of groupware
that web-based networking can support.

• Card and board games. Turn-based games have only
minimal network requirements (a few bytes every few
seconds). In some games, telepointers are also useful,
which requires a higher message rate (see below).

• Chat rooms. Text-based communication is lightweight,
although requirements increase as more people join the
conversation. With two participants, a chat-room
application would need to send no more than a few dozen
bytes per second, and does not need a high update rate;
larger rooms such as IRC may need to send hundreds of
bytes per second (but all incoming messages can still be
aggregated into a low update rate).

• Shared workspaces. Groupware systems such as shared
whiteboards or group design environments involve
manipulable objects in the shared workspace. The
requirements for these systems are similar to those for
mouse movement (and telepointers are almost always
used in shared workspaces), but additional messages also
need to be sent for the transactions in the workspace (e.g.,
drawing a line or moving an object). With fewer than ten
people, these applications might need to send a few
hundred bytes per second, with an update rate of 25/sec.

• First-person shooter (FPS) games. These games provide
an avatar-based virtual environment where multiple
people can interact. The main requirement for FPS games
is that position updates must arrive frequently in order to
improve the accuracy of avatar locations. A typical FPS
might attempt to send updates at a rate of 20/sec., with
message sizes dependent on the number of players.

• Videoconferencing. Although data rates vary, we will
consider an example audio/video application that requires
fast updates for audio (at 30-40/sec.) and large messages
(e.g., 500 bytes per message), with low latency and jitter.

Additional Requirements

Although we focus on message rate, message size, and
network delay, there are several other requirements that can
be considered for a groupware system. We return to these
later in the paper, and briefly assess whether the Web
technologies can support these requirements as well.

• Variable quality of service (QoS). Different messages in
groupware have different delivery requirements in terms
of allowable latency, reliability, and ordering [6,7].
Providing these capabilities often requires detailed control
over the underlying network – for example, being able to
select UDP transport instead of TCP when messages do
not need guaranteed reliability.

• Adaptive displays for different devices. When groupware
runs on heterogeneous devices (e.g., desktops, large
displays, and mobiles), the interface and the architecture
needs to adapt to provide the most appropriate data and
presentation to each participant [25]. For example,
different video sizes or frame rates might be delivered to
different people based on their display capabilities.

• Synchronization between streams. When a groupware
system uses multiple modes of interaction (e.g., voice and
gestural communication), synchronization issues become
important (e.g., making deictic gestures occur at the same
time as spoken references). This requires fine-grained
control of network use at the application level.

• Development support. Although not a networking issue,
developers need support for building and deploying
groupware systems. Support tools such as IDEs,
debuggers, and toolkits (both for networking and
interfaces) are now common for stand-alone applications.

• Graphics performance. Many interactive multi-user
systems are now graphics-intensive; in particular, online
games require both high-performance networking and a
graphics environment that can provide fast screen updates
and sophisticated rendering.

• Cross-platform support. A major deployment issue for
groupware designers is ensuring that software will run on
all platforms needed by the system users. This issue is
common in all software development, but is relevant for
groupware, since the system will often be used by
multiple people working from different platforms.

WEB-BASED NETWORKING APPROACHES

The networking infrastructure of the WWW was not
designed to support highly interactive applications or
synchronous groupware, but rather to provide simple page
content from a server to a client. However, web
technologies have gradually been adapted to support more
interactive capabilities. In the following sections we review
the capabilities of three main approaches to providing
networking functionality in the browser: re-purposing
existing network mechanisms, integration of socket
techniques into the browser, and plug-ins.

Re-Purposing

The Web is already a distributed and networked system,
and so browsers already contain several mechanisms for

169

network communication. One possibility for supporting
real-time groupware is to make use of these existing
capabilities, based on HTTP, AJAX, and Comet.

HTTP

The HyperText Transfer Protocol (HTTP) is an application-
level communication protocol built on top of TCP/IP.
HTTP is the original mechanism for getting information
from a web server. In the early days of the Web, only static
documents and images were served to browsers, but several
additions (e.g., CGI, Java Servlets, Active Server Pages)
were developed to allow provision of dynamic content.

In HTTP-based communication, a browser initiates a
connection to a web server using a TCP socket, and sends a
request to the server. The server processes the request and
replies in an HTTP response. The content can consist of
HTML, JavaScript, image content, or other data types. The
HTTP protocol allows any type of content, as long as the
consuming application supports those types. Standard
HTTP is not sufficient for real-time groupware, however,
because browsers typically reload the entire page when
receiving an HTTP message, which limits the update rate to
less than one frame per second.

AJAX and XMLHttpRequest (XHR)

XHR was devised to let browsers send and retrieve data
from web servers without having to reload the page. With
XHR, the underlying HTTP and network mechanics are
identical to retrieving a web page. However, rather than
using a page URL, the developer accesses an XHR
JavaScript object that allows browsers to process a server
response as an asynchronous callback. Since JavaScript is
the underlying technology, user interface events can trigger
functions that load and display dynamic content.

To send data to a web server, a JavaScript function uses the
XHR object to create an HTTP request. To retrieve data
from the server, a JavaScript function uses XHR to ask the
server for data. If data needs to be retrieved continuously
(e.g., for telepointers), the JavaScript function needs to
continuously poll the server for updates.

AJAX has proven successful for providing dynamic content
without reloading pages. However, sending updates from
the browser to the server, and polling for new data, requires
that a new socket connection and a new HTTP message be
created for each update, which is resource-intensive.

Comet

The resource problem of AJAX is partially solved with a set
of technologies collectively called Comet. They allow a
server to push data to the browser (‘server push’) without
requiring a new connection for each update (note, however,
that all communication from browser to server must still
use XHR as described above). There are three main Comet
techniques: long polling, XHR streaming, and iframe
streaming. There are toolkits that package these techniques,
(e.g., Ajax Push Engine, www.ape-project.org/; or Google
App Engine, code.google.com/appengine), but here we
focus on the underlying technologies individually.

Long polling allows the server to update a browser when it
has new data to send, which frees the browser from having
to poll the server continuously. Long polling reduces the
number of connections and HTTP messages by only
sending a response when the server has new data. The
connection between browser and server sits idle either until
it times out or until the server has data to send. When data
is received or a timeout terminates the connection, the
browser reconnects and waits for the next update. The
network usage of long polling is more efficient than polling
when data is sent infrequently (but needs to be received
quickly by the browser). However, when data is constantly
updated, as with real-time groupware, the performance of
long polling degenerates to standard polling.

XHR Multipart Streaming takes advantage of an HTTP
content type called ‘multipart’ that allows a web server to
send content to a browser in multiple pieces. This type was
designed for large messages (e.g., images), but can also be
exploited in an XHR response by sending a complete
message to the browser in each part, keeping the connection
open for the next message that needs to be sent. Essentially
the browser is tricked into keeping the socket connection
open, with the server sending each update as a part. Using a
single socket connection also reduces the number of HTTP
headers that need to be sent for requests and responses.

In XHR multipart streaming, the browser makes an initial
request to the server. The server indicates the content type
as ‘multipart’, and the browser keeps the connection open
as it waits to receive the parts of the HTTP response.
Whenever the server needs to pass data to the browser, it
sends a message as a response part. Finally, when the
application is ready to be closed, the server sends the final
response part. One limitation to XHR streaming is that in
some cases, the browser stores each part of a multi-part
message in memory (control over this functionality is part
of the API, but our testing showed that actual behaviour is
browser-dependent). To reduce memory load when using
XHR multipart streaming for other purposes, the multi-part
message is often closed and reopened periodically.

XHR Iframe Streaming also maintains a single connection
to the server, but uses a hidden iframe as the message. The
‘source’ attribute is set to a CGI, Java Servlet, or Active
Server Page that streams dynamically-generated JavaScript
to the browser. The initial response provides the appropriate
HTML tags, and then each message sent includes a <script>
tag with a JavaScript function call that passes the real
message as a parameter. The browser page implements this
function, and processes each message as it arrives. As with
XHR-multipart, the browser stores each part of the ‘frame
set’, meaning that this technique also requires that the
connection be reset periodically.

Adding Socket Functionality to the Browser

The Comet techniques described above re-purpose existing
mechanisms that were designed for uses other than real-
time communication. They therefore require the application

170

programmer to understand the details of the original
mechanism, introducing additional layers of complexity to
the system. An alternate approach is to incorporate true
real-time networking mechanisms into the browser itself, an
approach realized in the WebSocket standard of HTML5.

WebSockets are bidirectional, full-duplex communication
channels based on TCP sockets, and are part of the HTML5
standard developed by the W3C (dev.w3.org/html5/spec/).
WebSockets are built into browsers that support the
HTML5 standard (e.g., Google Chrome 5, Mozilla Firefox
4, and Apple Safari 5).

The WebSocket standard provides an API that is accessible
from within JavaScript, allowing developers to open a
socket to a server, and send and receive data. JavaScript
functions are automatically called when data is received.
The WebSocket API provides only basic functionality, and
does not provide the same degree of control over the socket
that is offered by many stand-alone languages.

Plug-ins

For most of the history of the Web, the only way to send
and receive real-time data was through plug-ins such as
Java Applets or Flash applications. A plug-in is a software
module that adds a specific capability to a larger system
[23]. Web browsers have long used plug-ins for a variety of
purposes, including displaying proprietary document
formats, playing video, or accessing devices (such as
cameras) that are outside the standard Web security model.

There are several browser plug-ins that allow the
development and deployment of real-time groupware.
These are typically based on an existing programming
language and application framework, and adapt these
existing facilities for use in the browser. Three common
plug-ins that can be used for groupware are Java applets
(based on the Java language and toolkit), Adobe
Flash/Shockwave (based on Flex or ActionScript), and
Microsoft Silverlight (based on .Net). Applications
developed with these tools typically run in a byte-code
environment that allows them to execute faster than
interpreted JavaScript.

All of these plug-ins provide full-featured environments
with extensive support for dealing with user input, graphics,
interfaces, networking, and threading. However, security
restrictions in the browser can mean that developers must
work with a restricted API and limited architectural models
for networking (e.g., unsigned Java applets can only make
socket connections to the web server). Despite these
limitations, plug-ins provide an execution environment that
is essentially equivalent to that of a stand-alone application.

However, many developers and Internet application
companies have recently rejected the plug-in approach in
favour of standards-based technologies. There are three
main problems with plug-ins:

• Installation and availability. In many web browsers, the
plug-ins needed to run a groupware application may be

missing or unavailable. This means that groupware
developers have no idea whether their applications will
run correctly when deployed, and means that users may
have to take time to find and install the necessary plug-
ins. This problem is particularly acute when planning for
devices such as smartphones or tablets, since the browsers
on many of these devices do not allow plug-ins at all.

• Dependence on closed technology. Plug-ins are often
proprietary, reducing a developer’s control over what
capabilities are available and how their groupware system
executes. As Steve Jobs states regarding Apple’s decision
to not include Flash in the iOS browser, “letting a third-
party layer of software come between the platform and the
developer ultimately results in sub-standard apps and
hinders the enhancement and progress of the platform. If
developers grow dependent on third party development
libraries and tools, they can only take advantage of
platform enhancements if and when the third party
chooses to adopt the new features.” [12].

• Security. Plug-ins are often themselves large and complex
software systems, and can be vulnerable to attacks and
security problems. For example, Adobe’s Flash plug-in
was the second most attacked system in 2009 [19], and
many security experts advise not using Flash when
visiting untrusted websites. Users can even install
additional add-ons to stop plug-ins like Flash, Java, and
Silverlight from executing.

WEB NETWORKING BASELINE PERFORMANCE STUDY

The goals of our performance study were to determine
whether real-time groupware can be supported with web-
based networking, which of the canonical types of
groupware each approach can support, and how web-based
networking approaches compare to a plug-in solution (as
exemplified by Java applets).

Methods

We implemented web applications using each of the
technologies described above, and carried out a series of
performance test with each application. We tested the
applications in three different network environments:

• LAN (Fast Ethernet, 3 hops to server, ping ≈ 0ms; browser
on 32-bit Windows 7 Core 2 Duo CPU);

• MAN (ADSL, 5 Mbps down, 64 Kbps up, 4 km, 9 hops to
server, ping ≈ 96ms; browser on 64-bit Windows 7 Core
i7 CPU);

• WAN (CA*NET university network, 2700 km, 11 hops to
server, ping ≈ 48ms; browser on Windows XP Pro, Core 2
Duo CPU).

The servers ran on a 32-bit Windows 7 PC with a Core 2
Duo CPU. All tests were carried out with the Firefox 4.0b7
browser, which performed best in pilot tests for all
techniques. Implementation details for each technology are:

• Long Polling, XHR Multipart Streaming, and Iframe

streaming. On the browser, we wrote JavaScript code in a
standard HTML document to send and receive test data
according to each technology. The server was a Java

171

servlet running under Tomcat 6.0; the servlet sent and
received messages based on requests from the browser.

• WebSockets. We wrote JavaScript code in an HTML
document to connect a WebSocket and send and receive
data. The server was a C# implementation of the
WebSocket specification, and sent and received data
according to requests sent from the browser.

• Java Applets. The applets and the Java server were built
using Java SE 6.0; the server ran as a standalone program.

We carried out two main assessments: tests of maximum
message rates with a standard 500-byte message, and tests
of the effect of increasing message size on message rate.

Results

Network Overhead

We inspected packets sent using each technology to
determine how much additional information (in addition to
the message payload and the standard TCP/IP headers) was
being sent. We found that the XHR techniques add
additional headers (multipart adds 40 bytes, iframe adds 38
bytes) to each packet. For XHR-multipart, the extra headers
consist of the content-type and a boundary marker at the
end of the part; for XHR-iframe, the overhead consists of
HTML <script> tags with an embedded JavaScript call to
handle the message contents. No added headers were seen
with WebSockets or Java Applets.

Additional network overhead is also incurred when
establishing connections to the server. XHR-multipart and
iframe require approximately 700 bytes to initiate a
connection to the server and this connection needs to be
reset periodically to flush the response text from memory.
WebSockets and Java sockets do not require this overhead.

Message Send Rate: Browser to Server

The rate at which the browser can send messages to the
server is the maximum rate at which a groupware client can
update others in the collaborative session. As discussed
above, groupware applications need to send updates at a
maximum rate of about 25 messages per second.

We tested each technology by setting up the browser to
send 10,000 messages as quickly as possible to the server.
We performed 10 of these trials for each technology to get a
mean send rate. Messages included a sequence number and
a 500-byte dummy payload (this size is used to prevent the
system from aggregating messages into a single packet,
since we were not able to turn off Nagle’s algorithm for the
web-based mechanisms). We checked to ensure that all
messages were correctly received.

Note that the test applications were not performing any
other tasks (such as processing input devices, receiving
incoming messages, or drawing graphics to the screen); all
of these additional tasks would reduce the message rate
somewhat (this issue is addressed below when we discuss
example applications). Results are shown in Figure 1. Note
that all Comet technologies use the same upload mechanism

– an XHR object in an HTTP POST request; therefore,
there are only three technologies in this test.

Two of the three approaches (WebSockets and Java
Applets) were able to send messages at a rate well above
what would be required in a real-time groupware system
(i.e., 25 messages/sec. or less). The lower performance on
the MAN setting does not indicate a limitation of the
technologies, but rather shows that the data used all the
available bandwidth of the connection. The performance of
XHR sending in wide-area applications, however, could
restrict this technology for groupware that requires a high
update rate from each client. Our tests show that smaller
messages see an increased XHR send rate, but do not
dramatically change performance.

Figure 1. Browser to server message rate (500 bytes).

Message Receive Rate: Server to Browser

The server-to-browser send rate is the rate at which a
groupware client can receive updates from others in the
session. Again, the maximum required rate is about 30
messages per second or less (per collaborator). If the server
aggregates these updates into a single message, then the
required rate will be unchanged, but the message will be
larger since the payload will include updates from several
other participants. If the server passes on all updates
without aggregating, then the required rate is multiplied by
the number of participants in the session (however, this is
unlikely since aggregation is a more efficient strategy).

All technologies other than Long Polling were able to
receive messages at a higher rate than what would be
required for real-time groupware (Figure 2), in all network
settings. In the MAN setting, the faster technologies are all
able to utilize the full bandwidth of the connection
(accounting for the similar performance).

Figure 2. Server to browser message rate (500 bytes).

1017

9162 8926

36

135 126

19

3297

354

1

10

100

1000

10000

XHR WS Applet XHR WS Applet XHR WS Applet
M

e
ss

a
g

e
s

/
se

c.

LAN MAN WAN

1232

5782 5525
1717314415

46

880 995 1129 934

20

315 328

5113

1245

1

10

100

1000

10000

100000

M
e

ss
a

g
e

s
/

se
c.

LAN MAN WAN

172

Maximum Receive Rate at Increasing Message Sizes

Some applications such as screen sharing and video
conferencing can require both a high message rate and large
messages. In our tests, we assessed the maximum message
rate for each technology as message size increased.

As can be seen in Figure 3, there are substantial differences
between the technologies, particularly with the smaller
message sizes that are likely to be used in a groupware
system. Nevertheless, all technologies are able to maintain a
high message rate (more than 30 messages per second for
all methods but Polling) even at message payloads of 1000
bytes. Surprisingly, WebSockets outperformed Java
Applets in the WAN setting, by a wide margin (however,
this result must be confirmed by further testing).

Figure 3. Max. receive rate at different message sizes.

REALISTIC GROUPWARE APPLICATIONS

To further test two technologies (Comet and WebSockets)
in a real-world setting, we developed two example
groupware applications. Developing real applications
required that we go beyond the networking-only code used
in the performance tests above. Interactive applications
require user input, a user interface, and graphics output if
the system provides a shared workspace.

Browser-based graphics and user-interface toolkits are still
less mature than what is available for plug-in or stand-alone
applications, but these tools are beginning to appear (for
example, the Google Web Toolkit [9] provides support for
many aspects of developing browser-based applications).

In addition, new tools are beginning to appear as part of
web standards. The HTML5 Canvas element provides a
substantial improvement in how browsers provide 2D
graphics, and has allowed a port of the visual Processing
language to JavaScript (processingjs.org). Processing.js
provides support for capturing user input and drawing to the
screen, and was used to develop both of the example
applications described below.

Puzzle Game (using XHR-Multipart)

We wrote a simple multi-player puzzle game, which
required both browser and server programs (Figure 5). The
browser portion was written in Processing.js and
JavaScript. Processing.js (which uses the HTML5 Canvas)
was used to draw telepointers, and JavaScript was used to
handle all communication with the web server. When the
browser loaded the game web page, a connection was

initiated to the server to receive messages via XHR
multipart streaming. Mouse locations were encapsulated as
a telepointer object and sent as a JSON-encoded POST
parameter every 40 milliseconds using XHR send. If no
mouse movement occurred during a 40-millisecond
interval, no mouse event was sent to the server.

A Java Servlet processed messages on the server. The XHR
streaming connection was reset every 30 seconds. When
the server disconnected at the 30-second interval, the
browser re-initiated the connection. The servlet pushed data
to the browser every 40 milliseconds. Messages from
browsers were stored using a mailbox model where each
connected client had a mailbox containing messages it
should receive. When the server received a telepointer or
object-move message from a client, the message was put
into all other clients’ mailboxes. When sending to the
browser, the servlet aggregated all mailbox messages for
the client into a single message.

Figure 5. XHR-multipart puzzle game with four users.

Shared Drawing Editor (using WebSockets)

A group drawing program was built as a second example in
order to demonstrate the use of WebSockets (Figure 6). The
browser side of the application was also written in
JavaScript (for network communication) and Proccesing.js
(for graphics and user input).

Figure 6. WebSockets drawing editor with three users.

173

The server program was written in C#, and acted as a
message-passing repeater to broadcast incoming messages
to all clients (although with rate control). Updates were sent
to the server on every mouse interrupt (which handled both
pointer movement and line drawing). All messages were
sent as text, with telepointer updates and new line-segment
messages sent separately. The server sent updates every
40ms, aggregating messages that arrived during that period.

Evaluation of the example applications

Our goals in evaluating the example applications were to
determine whether real-time interaction can successfully be
supported using web-based networking, whether the
throughput results hold in real groupware systems, and
whether the other necessary elements of a visual-workspace
application (e.g., graphics, user input) will perform well
enough in a browser-based application to meet the demands
of real-time collaboration.

We assessed latency, jitter, and subjective performance in
the three network contexts described above (LAN, MAN,
and WAN). Latency was calculated based on a repeated
series of round-trip times between the browser and the
server, using the actual messaging that would be used to
communicate data in the application. Jitter was calculated
using these same messages, and is reported as the mean
divergence from the average latency. Subjective usability
was determined through simple user tests where we and
others in our labs used the applications, and looked for
episodes of lag, non-smooth movement, or other artifacts in
the telepointer motion. Tests used the computers and
networks described above; results are shown in Table 1. In
general, latencies increase with distance, and are
considerably higher than the ping times, indicating that the
web-based technologies are adding overhead to the
communication. WebSocket latencies are consistently low
enough to support even lag-sensitive groupware such as
real-time games; XHR-multipart showed longer delays,
implying that this technology could not support the highest
level of requirement for real-time interaction.

We note that real-world Internet latencies are highly
variable, and further testing is required to provide a clearer
picture of these techniques’ delay characteristics. If these
values are confirmed, however, they show a substantial
difference between WebSocket and Comet approaches.

Table 1. Latency and jitter for example applications.

 XHR-Multipart WebSockets

 LAN MAN WAN LAN MAN WAN

Mean latency (ms) 67.8 121.2 185.7 11.6 55.8 86.5

Mean jitter (ms) 13.7 6.6 9.5 8.5 7.1 6.5

For our subjective tests, we evaluated the smoothness and
lag of telepointers, using two, four, and seven participants.
The puzzle game was deployed in a laboratory of MacBook
laptops on a dedicated LAN; all machines used Firefox 3.5.
Participants were asked to move their cursor in a
recognizable pattern (e.g., in a circle) so that motion and lag
could be perceived. All participants agreed that there was

no perceivable jitter or lag in the telepointer motion, and
that there was no perceivable difference between two, four,
or seven users.

For the wide-area tests of the puzzle game, we connected
three computers at the three network sites (one across the
city on the MAN; one across the country on the WAN). No
noticeable problems with the motion of telepointers or
pieces occurred during the test, and the participants were
easily able to work together to complete the puzzle. The
performance of the game over the real-world Internet was
not perceptibly different from its performance during our
LAN tests, and the user experience was easily comparable
to that of a stand-alone groupware system.

These usability results help to confirm that the network
performance results presented above do in fact translate to
effective real-world groupware systems.

DISCUSSION

In this section we summarize our main results, address
issues of real-world use of Web technologies for real-time
groupware, provide several recommendations for
groupware designers, and outline avenues for further work.

Summary of Results

Results of the baseline performance tests, latency and jitter
tests, and usability evaluations indicate that web-based
networking can successfully be used for many types of real-
time groupware. In the throughput test, all approaches were
able to maintain high message rates even with large
messages. These performance results were consistent across
LAN and MAN settings; however, the variance in the WAN
tests suggests that XHR-based approaches may be limited
for groupware that requires a high browser-to-server update
rate. Latency tests suggest that WebSocket-based systems
can support most groupware requirements; Comet-based
approaches, however, may present greater limitations for
groupware with strict lag requirements.

Our tests suggest that for most groupware types, web-based
networking is not a major limiting factor in the speed and
responsiveness of real-time groupware in the browser. A
caveat in this conclusion, discussed further below, is that
deploying real-time groupware on the Internet often
requires more detailed control over application-level
networking than what is available with web technologies,
and these requirements mean that the highest requirement
levels of distributed groupware (e.g., first-person shooter
games or videoconferencing) may not yet be feasible.

Deployment and Development Issues

Our studies suggest that Web technologies perform well in
terms of basic messaging rates; the next step is to determine
what these technologies can offer for the other groupware
requirements identified earlier.

• QoS control. This is an area where Web technologies are
considerably less mature than stand-alone groupware
approaches, providing essentially no support for
application-level network control. All of the web-based

174

networking technologies use only TCP transport, and
allow very little control over issues such as routing,
maximum packet sizes, aggregation, or timeouts. The
restriction to TCP also means that there is no opportunity
to use less reliable transports such as UDP, which are
better suited to awareness messages such as telepointers
[6]. For example, the reliability guarantees of TCP mean
that clients must wait for retransmission of a lost packet,
even though that information (e.g., a single telepointer
update) may not have been critical to the interaction.

• Graphics capabilities. Browser-based graphics is still far
behind stand-alone applications, but the development of
tools such as the HTML5 Canvas and web ports of
OpenGL (e.g., en.wikipedia.org/wiki/WebGL) mean that
Web-based graphics could soon approach the
performance of plug-in technologies. Performance tests of
these aspects of web-based applications is a clear area for
future work.

• Development environments. It is still more complex to
develop a groupware application using Web technologies
than it is with more established approaches. Several issues
contribute to this disparity: for example, the immaturity of
WebSockets means that documentation and examples can
be difficult to find; there are few environments for
development; and the nature of Comet technologies (as
repurposed capabilities originally designed for other uses)
makes it more difficult to understand, design, and debug
applications. There is a strong need for better tools in this
area – e.g., groupware toolkits that use Web technologies,
and development environments for Web applications.

• Cross-platform deployment. One of the main advantages
of a standards-based Web approach is that cross-browser
and cross-platform deployment should be made
considerably easier. This is still likely to happen, but the
current state is somewhat more chaotic: not all browsers
support all the technologies, and implementations (and
performance) can differ widely across browsers and
platforms. For example, Internet Explorer 8 does not
support XHR-multipart, and WebSockets are only
implemented in Firefox 4, Safari 5, and Chrome 5. These
differences will become less of a problem as browsers
adopt HTML5, but the problem will remain at least for
the short term. One capability that could improve this
situation is that of falling back from one technology to the
next, in order to improve a system’s robustness. That is, a
groupware system could try to use WebSockets (the best
performing technology we tested), and then fall back to
XHR-multipart if WebSockets are not supported, and then
fall back to iframe for Internet Explorer. This adds
complexity to the application, but this is exactly the kind
of capability that could be built into a toolkit, and made
invisible (or at least less painful) for the developer.

• Access to devices and file systems. The current security
model of the Web prevents web pages from accessing any
devices or files outside a very narrow sandbox. This
means that groupware applications such as video or
audio-conferencing are not currently possible using the

Web networking technologies discussed here. However, it
is likely that these restrictions will be relaxed in future
HTML standards as more capabilities are added to
browsers – for example, there is already a draft for a
<device> element in HTML for access to webcams [27].

• Real-world performance testing. We tested applications in
three different network environments, but more work
needs to be done to test web-based networking in real-
world situations – for example, situations where
bandwidth is limited, where traffic patterns change, and
where loss and jitter are common. As mentioned above,
the use of TCP transport means that Web-based
groupware may be much more susceptible to latency
problems than systems that can use unreliable transports
like UDP [7].

Recommendations for Groupware Developers

Our work can provide several lessons and guidelines for
groupware developers. The main and most obvious
recommendation is that developers should start to consider
the browser as a legitimate vehicle for deploying real-time
groupware – not just asynchronous or semi-synchronous
systems. Our results suggest that Web technologies can
support a wide variety of network requirements, including
highly interactive workspaces and systems for large groups.
The capabilities of these technologies are not well known in
the CSCW community, but the good network performance
seen in our studies suggests that a new space for
deployment of real-time groupware is now available.

Second, our results show that WebSockets are the best-
performing of the standards-based web technologies. In
addition, they are simple to work with (compared with the
Comet techniques) and have a conceptual model that
groupware developers are already familiar with. Although
not all browsers support WebSockets, this is likely the
technology that will eventually become the standard for
groupware networking in the browser.

Last, our experiences also recommend caution given the
early state of some of these technologies, and the lack of
powerful development tools. Although this situation will
undoubtedly improve, developing and testing large-scale
groupware applications is likely to be more difficult than an
equivalent stand-alone or plug-in solution.

CONCLUSIONS AND FUTURE WORK

Standard web browsers are increasingly becoming a
platform for delivering rich groupware applications.
However, the traditional way that these applications are
deployed – using browser plug-ins – presents several
problems that have led many companies and developers to
look for other solutions such as AJAX, Comet, and
WebSockets. These web-based networking approaches are
capable of providing real-time interaction, but there is little
information available about whether they can support real-
time groupware. To establish baselines for the performance
of web-based networking, we tested the performance of two
recent approaches (Comet techniques and WebSockets) and

175

compared them to a plug-in solution, Java Applets. We
found that in terms of message rates and message sizes,
web-based networking approaches were able to maintain
throughput that would support a wide variety of real-time
groupware. We also developed two example applications
(using XHR-multipart and WebSockets) and showed that
they performed well in three real-world network settings.
Our work shows that developers can begin to consider the
web browser as a legitimate vehicle for deploying a wide
range of interactive real-time groupware.

These studies suggest three main directions for further
research. First, we plan to further test these web
technologies in realistic applications on the real-world
Internet, and determine how well they deal with issues of
lag and restricted bandwidth in everyday use. Second, we
will extend our tests to browsers on other platforms,
particularly phones and other mobile devices. Third, we
plan to carry out performance tests for other parts of a
browser-based groupware system (such as graphics). Last,
over the longer term we plan to develop a groupware toolkit
based on WebSockets that will simplify the development of
web-based real-time groupware. The toolkit will provide
groupware developers with the same types of support that
are already common for stand-alone groupware, such as
session management support, awareness widgets, shared
data structures, and debugging tools.

ACKNOWLEDGMENTS

This work was supported by NSERC, the SurfNet research
network, and the GRAND NCE network.

REFERENCES

1. Bentley, R., Horstmann, T., and Trevor, J., The World
Wide Web as Enabling Technology for CSCW: The
Case of BSCW, CSCW, 6, 2-3, 1997, 111-134.

2. Buszko, D., Lee, W., and Helal, A. Decentralized ad-
hoc groupware API and framework for mobile
collaboration. Proc. Group 2001, 5-14.

3. Chung, G., Dewan, P., and Rajaram, S. Generic and
composable latecomer accommodation service for
centralized shared systems. Proc. EHCI 1998, 129-148.

4. Crane, D. and McCarthy, P., Comet and Reverse Ajax:

the Next-Generation Ajax 2.0. Apress, 2008.

5. de Alwis, B., Gutwin, C., and Greenberg, S., GT/SD:
Performance and simplicity in a groupware toolkit,
Proc. EICS 2009, 265–274.

6. Dyck, J., Gutwin, C., Subramanian, S., Fedak, C., High-
performance telepointers. Proc. CSCW 2004, 172-181.

7. Dyck, J., Gutwin, C., Graham, T., and Pinelle, D.,
Beyond the LAN: techniques from network games for
improving groupware performance. Proc. GROUP

2007, 291-300.

8. Google Inc., Laying the Foundation for a New Google

Docs, googleenterprise.blogspot.com/2010/04/laying-
foundation-for-new-google-docs.html (May 17, 2010).

9. Google Inc., Google Web Toolkit Overview.
code.google.com/webtoolkit/ (July 31, 2010).

10. Hall, R., Mathur, A., Jahanian, F., Prakash, A., and
Rassmussen, C. Corona: a communication service for
scalable, reliable group collaboration systems. Proc.

CSCW 1996, 140-149.

11. Ionescu, M., and I. Marsic. Latecomer and Crash
Recovery Support in Fault Tolerant Groupware. IEEE

Distributed Systems Online, 2, 7, 2001.

12. Jobs, S., Thoughts on Flash, www.apple.com/hotnews/
thoughts-on-flash/ (May 17, 2010).

13. Mills, E., Adobe Flash policy is risky, news.cnet.com/
8301-27080_3-10396326-245.html (July 31, 2010).

14. Morgan, S., and Wang, W., The Impact of Web 2.0
Developments on Real-Time Groupware, Proc. IEEE

Conference on Social Computing 2010, 534-539.

15. Navarre, D., Palanque, P., Basnyat, S., Usability Service
Continuation through Reconfiguration of Input and
Output Devices in Safety Critical Interactive Systems,
Proc. SAFECOMP 2008, LNCS 5219, 373-386.

16. Palmer, J., Web Site Usability, Design, and
Performance Metrics, Information Systems Research,
13, 2, 151-167.

17. Roseman, M., and Greenberg, S., Building real-time
groupware with GroupKit, a groupware toolkit. ToCHI,
3, 1, 1996, 66–106.

18. Russel, A., Comet: Low Latency Data for the Browser,
alex.dojotoolkit.org/2006/03/comet-low-latency-data-
for-the-browser/, retrieved July 31, 2010.

19. Symantec Inc., Internet Security Threat Report: Volume

XV: April 2010, www4.symantec.com/Vrt/wl?tu_id
=SUKX1271711282503126202, (July 31, 2010).

20. Tian, M., Voigt, T., Naumowicz,, T., Ritter, H.,
Schiller, J., Performance considerations for mobile web
services, Comp. Comm., 27, 11, 2004, 1097-1105.

21. Titchkosky, L., Arlitt, M., and Williamson, C. A
performance comparison of dynamic Web technologies.
SIGMETRICS Perform. Eval. Rev. 31, 3, 2003, 2-11.

22. Wang, W. Powermeeting: gwt-based synchronous
groupware. Proc. Hypertext 2008, 251-252.

23. Wikipedia, Plug-In (computing), en.wikipedia.org/wiki/
/Plug-in_%28computing%29 (July 15, 2010).

24. Wikipedia, Bit Rate, en.wikipedia.org/wiki/ /Bit_rate
(Nov. 30, 2010)

25. Wolfe, C., Graham, T.C.N., Phillips, W.G., and Roy, B.,
Fiia: User-Centered Development of Adaptive
Groupware Systems, Proc. EICS 2009, 275-284.

26. World-Wide Web Consortium, The Web Sockets API,
http://www.w3.org/TR/websockets/ (July 31, 2010).

27. World-Wide Web Consortium, HTML Device,
http://www.w3.org/TR/html-device/ (July 31, 2010).

176

